Genes involucrados en la Amelogénesis Imperfecta. Parte I
DOI:
https://doi.org/10.17533/udea.rfo.v30n1a10Keywords:
Amelogenesis imperfecta, Dental enamel, Dental enamel proteins, Dental esthetics, GenesAbstract
Amelogenesis imperfecta (AI) refers to a group of genetic alterations of the normal structure of the dental enamel that disturbs its clinical appearance. AI is classified as hypoplastic, hypocalcified, and hypomaturation. These abnormalities may exist in isolation or associated with other systemic conditions in the context of a syndrome. This article is aimed to thoroughly describe the genes involved in non-syndromic AI, the proteins encoded by these genes and their functions according to current scientific evidence. An electronic literature search was carried out from the year 2000 to December of 2017, preselecting 1,573 articles, 63 of which were analyzed and discussed. The results indicated that mutations in 16 genes are responsible for nonsyndromic AI: AMELX, AMBN, ENAM, LAMB3, LAMA3, ACPT, FAM83H, C4ORF26, SLC24A4, ITGB6, AMTN, MMP20, KLK4, WDR72, STIM1, GPR68. Future research with a translational approach will help identify new mutations or genes, contributing to the evolution in the way of classifying, diagnosing and treating the various types of amelogenesis imperfecta.
Downloads
References
Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016 Feb;53(2):98–110.
Prasad MK, Laouina S, El Alloussi M, Dollfus H, Bloch-Zupan A. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes. J Dent Res. 2016 Dec;95(13):1457–63.
Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007 Apr 4;2:17.
Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988 Nov;17(9–10):547–53.
Gadhia K, McDonald S, Arkutu N, Malik K. Amelogenesis imperfecta: an introduction. Br Dent J. 2012 Apr 27;212(8):377–9.
Guo J, Lyaruu DM, Takano Y, Gibson CW, DenBesten PK, Bronckers ALJJ. Amelogenins as potential buffers during secretory-stage amelogenesis. J Dent Res. 2015 Mar;94(3):412–20.
Chan H-C, Estrella NMRP, Milkovich RN, Kim J-W, Simmer JP, Hu JC-C. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci. 2011 Dec;119 Suppl 1:311–23.
Lagerström M, Dahl N, Nakahori Y, Nakagome Y, Bäckman B, Landegren U, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics. 1991 Aug;10(4):971–5.
Salido EC, Yen PH, Koprivnikar K, Yu LC, Shapiro LJ. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am J Hum Genet. 1992 Feb;50(2):303–16.
Hart PS, Aldred MJ, Crawford PJM, Wright NJ, Hart TC, Wright JT. Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch Oral Biol. 2002 Apr;47(4):261–5.
Brookes SJ, Barron MJ, Boot-Handford R, Kirkham J, Dixon MJ. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate. Hum Mol Genet. 2014 May 1;23(9):2468–80.
Le MH, Warotayanont R, Stahl J, Den Besten PK, Nakano Y. Amelogenin Exon4 Forms a Novel miRNA That Directs Ameloblast and Osteoblast Differentiation. J Dent Res. 2016 Apr;95(4):423–9.
MacDougall M, DuPont BR, Simmons D, Reus B, Krebsbach P, Kärrman C, et al. Ameloblastin gene (AMBN) maps within the critical region for autosomal dominant amelogenesis imperfecta at chromosome 4q21. Genomics. 1997 Apr 1;41(1):115–8.
Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004 Dec 6;167(5):973–83.
Iizuka S, Kudo Y, Yoshida M, Tsunematsu T, Yoshiko Y, Uchida T, et al. Ameloblastin regulates osteogenic differentiation by inhibiting Src kinase via cross talk between integrin beta1 and CD63. Mol Cell Biol. 2011 Feb;31(4):783–92.
Beyeler M, Schild C, Lutz R, Chiquet M, Trueb B. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Exp Cell Res. 2010 Apr 15;316(7):1202–12.
Poulter JA, Murillo G, Brookes SJ, Smith CEL, Parry DA, Silva S, et al. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet. 2014 Oct 15;23(20):5317–24.
Zhang X, Diekwisch TGH, Luan X. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse. Eur J Oral Sci. 2011 Dec;119 Suppl 1:270–9.
Hu JC-C, Hu Y, Smith CE, McKee MD, Wright JT, Yamakoshi Y, et al. Enamel defects and ameloblast-specific expression in Enam knock-out/lacz knock-in mice. J Biol Chem. 2008 Apr 18;283(16):10858–71.
Hu JC-C, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biol. 2003;14(6):387–98.
Wang X, Zhao Y, Yang Y, Qin M. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PloS One. 2015;10(3):e0116514.
Seymen F, Lee K-E, Koruyucu M, Gencay K, Bayram M, Tuna EB, et al. ENAM mutations with incomplete penetrance. J Dent Res. 2014 Oct;93(10):988–92.
Kim JW, Seymen F, Lee KE, Ko J, Yildirim M, Tuna EB, et al. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J Dent Res. 2013 Oct;92(10):899–904.
Lee K-E, Ko J, Le CGT, Shin TJ, Hyun H-K, Lee S-H, et al. Novel LAMB3 mutations cause non-syndromic amelogenesis imperfecta with variable expressivity. Clin Genet. 2015;87(1):90–2.
Poulter JA, El-Sayed W, Shore RC, Kirkham J, Inglehearn CF, Mighell AJ. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur J Hum Genet EJHG. 2014 Jan;22(1):132–5.
Kim Y-J, Shin TJ, Hyun H-K, Lee S-H, Lee ZH, Kim J-W. A novel de novo mutation in LAMB3 causes localized hypoplastic enamel in the molar region. Eur J Oral Sci. 2016;124(4):403–5.
Gostyńska KB, Yuen WY, Pasmooij AMG, Stellingsma C, Pas HH, Lemmink H, et al. Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency. Eur J Hum Genet. 2017 Jan;25(1):94–9.
Yuen WY, Pasmooij AMG, Stellingsma C, Jonkman MF. Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm Venereol. 2012 Nov;92(6):695–6.
Seymen F, Kim YJ, Lee YJ, Kang J, Kim T-H, Choi H, et al. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta. Am J Hum Genet. 2016 Nov 3;99(5):1199–205.
Choi H, Kim T-H, Yun C-Y, Kim J-W, Cho E-S. Testicular acid phosphatase induces odontoblast differentiation and mineralization. Cell Tissue Res. 2016 Apr;364(1):95–103.
Smith CE, Whitehouse LL, Poulter JA, Brookes SJ, Day PF, Soldani F, et al. Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta. Eur J Hum Genet EJHG. 2017;25(8):1015–9.
Kim J-W, Lee S-K, Lee ZH, Park J-C, Lee K-E, Lee M-H, et al. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am J Hum Genet. 2008 Feb;82(2):489–94.
Lee S-K, Hu JC-C, Bartlett JD, Lee K-E, Lin BP-J, Simmer JP, et al. Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification. Hum Mutat. 2008 Aug;29(8):E95-99.
Xin W, Wenjun W, Man Q, Yuming Z. Novel FAM83H mutations in patients with amelogenesis imperfecta. Sci Rep. 2017 Jul 20;7(1):6075.
Kantaputra PN, Intachai W, Auychai P. All enamel is not created equal:Supports from a novel FAM83H mutation. Am J Med Genet A. 2016 Jan;170A(1):273–6.
Lee S-K, Lee K-E, Jeong T-S, Hwang Y-H, Kim S, Hu JC-C, et al. FAM83H mutations cause ADHCAI and alter intracellular protein localization. J Dent Res. 2011 Mar;90(3):377–81.
Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016 25;6:26557.
Parry DA, Brookes SJ, Logan CV, Poulter JA, El-Sayed W, Al-Bahlani S, et al. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am J Hum Genet. 2012 Sep 7;91(3):565–71.
Iwamoto T, Uehara A, Imanaga I, Shigekawa M. The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity. J Biol Chem. 2000 Dec 8;275(49):38571–80.
Parry DA, Poulter JA, Logan CV, Brookes SJ, Jafri H, Ferguson CH, et al. Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. Am J Hum Genet. 2013 Feb 7;92(2):307–12.
Hu P, Lacruz RS, Smith CE, Smith SM, Kurtz I, Paine ML. Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts. Cells Tissues Organs. 2012;196(6):501–9.
Lacruz RS, Smith CE, Bringas P, Chen Y-B, Smith SM, Snead ML, et al. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol. 2012 May;227(5):2264–75.
Wang S, Choi M, Richardson AS, Reid BM, Seymen F, Yildirim M, et al. STIM1 and SLC24A4 Are Critical for Enamel Maturation. J Dent Res. 2014 Jul;93(7 Suppl):94S-100S.
Herzog CR, Reid BM, Seymen F, Koruyucu M, Tuna EB, Simmer JP, et al. Hypomaturation amelogenesis imperfecta caused by a novel SLC24A4 mutation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 Feb;119(2):e77-81.
Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007 Dec;39(12):1443–52.
Breuss JM, Gillett N, Lu L, Sheppard D, Pytela R. Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues. J Histochem Cytochem Off J Histochem Soc. 1993 Oct;41(10):1521–7.
Wang S-K, Choi M, Richardson AS, Reid BM, Lin BP, Wang SJ, et al. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum Mol Genet. 2014 Apr 15;23(8):2157–63.
Poulter JA, Brookes SJ, Shore RC, Smith CEL, Abi Farraj L, Kirkham J, et al. A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum Mol Genet. 2014 Apr 15;23(8):2189–97.
Ansar M, Jan A, Santos-Cortez RLP, Wang X, Suliman M, Acharya A, et al. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur J Hum Genet EJHG. 2016;24(8):1223–7.
Bartlett JD, Simmer JP. New perspectives on amelotin and amelogenesis. J Dent Res. 2015 May;94(5):642–4.
Moffatt P, Wazen RM, Dos Santos Neves J, Nanci A. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res. 2014 Dec;358(3):843–55.
Moffatt P, Smith CE, St-Arnaud R, Simmons D, Wright JT, Nanci A. Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J. 2006 Oct 1;399(1):37–46.
Smith CEL, Murillo G, Brookes SJ, Poulter JA, Silva S, Kirkham J, et al. Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum Mol Genet. 2016 15;25(16):3578–87.
Prajapati S, Tao J, Ruan Q, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials. 2016 Jan;75:260–70.
Kwak SY, Yamakoshi Y, Simmer JP, Margolis HC. MMP20 Proteolysis of Native Amelogenin Regulates Mineralization In Vitro. J Dent Res. 2016 Dec;95(13):1511–7.
Guan X, Xu M, Millar SE, Bartlett JD. Beta-catenin is essential for ameloblast movement during enamel development. Eur J Oral Sci. 2016;124(3):221–7.
Gasse B, Prasad M, Delgado S, Huckert M, Kawczynski M, Garret-Bernardin A, et al. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta. Front Physiol. 2017;8:398.
Kim YJ, Kang J, Seymen F, Koruyucu M, Gencay K, Shin TJ, et al. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta. Front Physiol. 2017;8:229.
Wang S-K, Hu Y, Simmer JP, Seymen F, Estrella NMRP, Pal S, et al. Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J Dent Res. 2013 Mar;92(3):266–71.
Yamakoshi Y, Simmer JP, Bartlett JD, Karakida T, Oida S. MMP20 and KLK4 activation and inactivation interactions in vitro. Arch Oral Biol. 2013 Nov;58(11):1569–77.
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent. 2013 Sep 16;2013:684607.
Smith CEL, Kirkham J, Day PF, Soldani F, McDerra EJ, Poulter JA, et al. A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities. Front Physiol. 2017;8:333.
Katsura KA, Horst JA, Chandra D, Le TQ, Nakano Y, Zhang Y, et al. WDR72 models of structure and function: a stage-specific regulator of enamel mineralization. Matrix Biol J Int Soc Matrix Biol. 2014 Sep;38:48–58.
El-Sayed W, Parry DA, Shore RC, Ahmed M, Jafri H, Rashid Y, et al. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet. 2009 Nov;85(5):699–705.
Picard C, McCarl C-A, Papolos A, Khalil S, Lüthy K, Hivroz C, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med. 2009 May 7;360(19):1971–80.
Ludwig M-G, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, et al. Proton-sensing G-protein-coupled receptors. Nature. 2003 Sep 4;425(6953):93–8.
Parry DA, Smith CEL, El-Sayed W, Poulter JA, Shore RC, Logan CV, et al. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am J Hum Genet. 2016 Oct 6;99(4):984–90.
Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, et al. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PloS One. 2015;10(3):e0121288.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2018 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.