Ivermectin use on pastured livestock in Colombia: parasite resistance and impacts on the dung community
DOI:
https://doi.org/10.17533/udea.rccp.v36n1a2Keywords:
coprophagous beetle, dung, dung beetle, dung-associated invertebrates, dung insect, ivermectin, manure beetle, parasite resistanceAbstract
Ivermectin (IVM) has been the most widely used antiparasitic agent in veterinary medicine since it came to the market in 1981. In its risk assessment, the American Food and Drug Administration (FDA) determined that, although it is very toxic to aquatic organisms, it is unlikely to contaminate watercourses from current applications registered for animal use. However, the effects of IVM on non-target invertebrate fauna can greatly impact grassland ecology. The economic loss from undegraded dung on lowering the quality of pastures and reducing the area of pasture available and palatable to livestock was US $380 million for the American economy in 2003. We discuss selected aspects of IVM effects on non-target species, dung beetles in pastures. We do not consider confined or feedlot production. Ivermectin affects a highly beneficial and taxonomically diverse group inhabiting dung pats, including flies, parasitic wasps, and coprophilus and predatory dung beetles. Some studies show that dung from IVM-treated animals can remain in the pasture without noticeable signs of degradation for up to 340 days, while pats from untreated animals are almost completely degraded after 80 days. Field and laboratory studies have shown many invertebrates species are susceptible to IVM at concentrations well below those excreted in the feces of treated cattle. IVM affects reproduction and development of coleopteran larvae at concentrations up to 10 times lower that cause mortality. In Colombia, at least 68 species of the subfamily Scarabaeinae have been identified in dung communities. Greater diversity of dung beetles is associated with forests and silvopastoral systems that incorporate native trees and provide habitats for survival. IVM should be used selectively on animals on pasture to minimize parasite resistance and effects on dung beetle communities and other nontarget invertebrate communities.
Downloads
References
Arroyave Sierra OJ, Chamorro Rengifo J, Ochoa Muñoz AF. Crecimiento de larvas de mosca soldado alimentadas con gallinaza, porcinaza y alimento para ponedoras. Revista Colombiana de Ciencia Animal (RECIA) 2019; 11(2): 73-81. Epub 2020 May 7. doi:10.24188/recia.v11.n2.2019.730.
Beynon SA, Peck M, Mann DJ, Lewis OT. Consequences of alternative and conventional endoparasite control in cattle for dung-associated invertebrates and ecosystem functioning. Agric Ecosyst Environ 2012; 162:36-44. doi:10.1016/j.agee.2012.08.010.
Bloom RA, Matheson JC. Environmental assessment of avermectins by the US Food and Drug Administration. Vet Parasit 1993; 48:281-294. doi: 10.1016/0304-4017(93)90163-h.
Chaparro-Gutierrez JJ, Villar D, Zapata JD, Lopez S, Howell SB, Lopez A, Storey BE. Multi-drug resistant Haemonchus contortus in a sheep flock in Antioquia, Colombia. Vet Parasit Reg Stud Reports 2017; 10:29.34. doi: 10.1016/j.vprsr.2017.07.005.
Chaparro-Gutierrez JJ, Villar D, Schaeffer DJ. Interpretation of the larval immersion test with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus from Colombian farms, Ticks Tick Borne Dis 2019; Epub 2020 Mar;11(2):10132. doi: 10.1016/j.ttbdis.2019.101323.
Correa CMA, Lara MA, Puker A, Noriega JA, Korasaki V. Quantifying responses of dungbeetle assemblages to cattle grazing removal over a short-term in introduced Brazilian pastures. Acta Oecologia 2021; 110 May; 103681. doi: 10.1016/j.actao.2020.103681.
Dadour I, Allen J. 2001. Control of bush flies by dung beetles. Department of Agriculture Farmnote Series: 1991. 14 February 2006; http://agspsrv34.agric.wa.gov.au/agency/pubns/farmnote/1991/F05891.htm.
Doube B, Macqueen A. Establishment of exotic dung beetles in Queensland: the role of habitat specificity. BioControl 1991; 36(3): 353–360. doi:10.1007/BF02377939.
Floate KD. Off-target effects of ivermectin on insects and on dung degradation in southern Alberta, Canada. Bull Entomol Res 1998; 88(1): 25-35. doi:10.1017/S0007485300041523.
Floate KD 2011. Arthropods of Canadian Grasslands (Volume 2): Inhabitants of a Changing Landscape (pp.71-88) Chapter: Arthropods in cattle dung on Canada’s grasslands. Publisher: Ottawa: Biological Survey of Canada. Editors: K.D. Floate.
Floate KD, Düring RA, Hanafi J, Jud P, Lahr J, Lumaret JP, Scheffczyk A, Tixier T, Wohde M, Römbke J, Sautot L, Blanckenhorn WU. Validation of a standard field test method in four countries to assess the toxicity of residues in dung of cattle treated with veterinary medical products. Environ Toxicol Chem 2015; 35(8): 1934-1946. Epub 2015 Dec 3. doi: 10.1002/etc.3154.
Giraldo C, Montoya S, Escobar F. Manure Beetles in Livestock Landscapes of Colombia. (Escarabajos del estiércol en paisajes ganaderos de Colombia. Fundación CIPAV.) Cali, Colombia. Epub 2020 Aug 16. Manure Beetles in Colombian Cattle Landscapes | CIPAV.
González-Rodríguez LM, García-Hernández AL, Clarkson B. First records of water scavenger beetle species (Coleoptera, Hydrophilidae) from Quindío Department, Colombia. Check List 2017; 13(5): 605–620. https://doi.org/10.15560/13.5.605.
González-Alvarado A, Torres E, Medina CA. Coprophagous beetles (Coleoptera: Scarabaeidae: Scarabaeinae) from Colombian rainforests from the entomological collection of the Alexander von Humboldt Institute. (Escarabajos coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) de bosques secos Colombianos de la Colección Entomológica del Instituto Alexander von Humboldt.) Biota Colombiana, 2015; 16 (1): 88-95. http://repository.humboldt.org.co/bitstream/handle/20.500.11761/9430/Biota_16_1_2015_baja_2_p90-97.pdf;sequence=1
Giraldo-Echeverri C, Montoya-Molina S, Escobar F. 2018. Manure Beetles in Livestock Landscapes of Colombia. (Escarabajos del estiércol en paisajes ganaderos de Colombia.) Fundación CIPAV. Cali, Colombia. 146 p. escarabajos-del-estiercol-en-paisajes-ganaderos-de-colombia.pdf (cipav.org.co).
Horvat AJM, Petrovic M, Babić S, Pavlović DM, Ašperger D, Pelko S, Mance AD, Kaštelan-Macan M. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trends Analytic Chem, 2012; 31, pp. 61-84. doi:10.1016/j.trac.2011.06.023.
Liebig M, Alonso-Fernandez A, Blubaum-Gronau E, Brinke M, Carbonell G, Egeler P, Fenner K, Fernandez C. Environmental risk assessment of ivermectin: A case study. Integr Environ Assess Manag 2010; 6 Suppl:567-587. https://doi.org/10.1002/ieam.96
Lopez-Arias A, Villar D, Chaparro-Gutierrez J, Miller RJ, Perez de León AA. Reduced efficacy of commercial acaricides against populations of resistant cattle tick Rhipicephalus microplus from two municipalities of Antioquia, Colombia. Environ Health Insights 2014;8(Suppl 2): 71–80. doi:10.4137/EHI.S16006.
Losey JE, Vaughan M. The economic value of ecological services provided by insects. BioScience. 2006; 56(4): 311–23. doi: 10.1641/0006-3568(2006)56[311:tevoes] 2.0.co;2.
Mendivil-Nieto JA, Giraldo-Echeverri C, Quevedo-Vega CJ, Chará J, Medina CA. Dung beetles associated with sustainable livestock systems in different regions of Colombia. (Escarabajos estercoleros asociados a sistemas de ganadería sostenible en diferentes regiones de Colombia.) Biota Colombiana 2020; 21(2), 134-141. https://doi.org/10.21068/c2020.v21n02a09.
Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Escobar F, Chará J, Murgueitio E. Diversity of coprophagous beetles in silvopastoral systems of the Cesar River Valley, Colombia. (Diversidad de escarabajos coprófagos en sistemas silvopastoriles del Valle del rio Cesar, Colombia.) 2015; 3er Congreso Nacional de Sistemas Silvopastoriles – VIII Congreso Internacional de Sistemas Silvopastoriles. 1ª ed. – Santa Cruz: Ediciones INTA.
Neita-Moreno JC. Beetles (Coleoptera: Scarabaeoidea) from the department of Chocó, Colombia. (Escarabajos (Coleoptera: Scarabaeoidea) del departamento del Chocó, Colombia. Beetles (Coleoptera: Scarabaeoidea) from Department of Chocó, Colombia.) Rev Biodivers Neotrop 2011; 1(1); 17-27.
http://sedici.unlp.edu.ar/handle/10915/105791.
Puerta JM, Chaparro JJ, Lope-Arias A, Arias-Arroyave S, Villar D. Loss of in vitro efficacy of topical commercial acaricides on Rhipicephalus microplus (Ixodida: Ixodidae) from Antioquian farms, Colombia. J Med Entomol 2015; 52:1309-1314. doi: 10.1093/jme/tjv129.
Strong L, Wall R. Ivermectin in cattle treatment: nonspecific effects on pastureland ecology. Aspects Appl Biol 1988; 17:231-238.
Villar D, Puerta J, López A, Chaparro JJ. Ivermectin resistance of three Rhipicephalus microplus populations using the larval immersion test. Revista Colombiana De Ciencias Pecuarias. 2016a; 29(1), 51–57. doi: 10.17533/udea.rccp.v29n1a06.
Villar D, Gutiérrez J, Piedrahita D, Rodríguez-Durán A, Cortés-Vecino JA, Góngora-Orjuela A, Martínez N, Chaparro-Gutiérrez JJ. Resistencia in vitro a acaricidas tópicos de poblaciones de garrapatas Rhipicephalus (Boophilus) microplus provenientes de cuatro departamentos de Colombia. Rev. CES Med. Zootec. 2016b; Vol 11 (3): 58-70. doi: 10.21615/cesmvz.11.3.6.
Villar D, Klafke GM, Rodríguez-Durán A, Bossio F, Miller R, Perez-de-Leon AA, Cortés-Vecino JA, Chaparro-Gutierrez J. Resistance profile and molecular characterization of pyrethroid resistance in a Rhipicephalus microplus strain from Colombia. Med Vet Entomol 2020; 34(1):105-115. doi: 10.1111/mve.12418.
Wall R, Strong L. Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature 1987; 327(6121):418-21. doi: 10.1038/327418a0.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.