Bioguided fractionation from Solanum elaeagnifolium to evaluate toxicity on cellular lines and breast tumor explants

Keywords: Solanum, fractionation, bioguided, cell line, tumor

Abstract

Background: Bioactive compounds were isolated from the fruit of S. elaeagnifolium, as it has a high potential for functional foods or pharmaceutical products development. Objectives: In this study bioguided fractionation a methanolic extract from S. elaeagnifolium fruit was carried out to evaluate cytotoxicity and antitumoral potential on breast tumor explants. Methods: A microdilution method with A. salina was used to isolate bioactive compounds; fractionation was performed by vacuum liquid chromatography, and the monitoring from fractions was done by thin layer chromatography. Moreover, toxicity from fractions isolated in Vero, HeLa, and MCF-7 cell lines was assessed by MTT assay, as well as in breast tumor explants by Alamar blue assay. To partially identify compounds was realized a qualitative phytochemical analysis as well as a spectroscopic characterization by Rp-HPLC-MS. Results: Were promising, as it was observed that FVLC7 showed an LC50= 44.8 ± 3.5 ppm on HeLa cell line, while Vero and MCF-7 cell lines showed an LC50=80.0 ± 8.5 and LC50 >1000 ppm respectively. Also, an antitumor effect was found in breast tumor explants obtained from a patient in remission. Qualitative phytochemical analysis showed that FVLC7 contains alkaloids, coumarins, and sesquiterpene lactones, whereas characterization by Rp-HPLC-MS detected quinic acid, chlorogenic acid, dicafeoilquinic acid as well as presence an alkaloid. Conclusion: Therefore, was confirmed that active compounds isolated from S. elaeagnifolium possess antineoplastic potential and that A. salina test facilitates its selection.

|Abstract
= 61 veces | PDF
= 82 veces|

Downloads

Download data is not yet available.

Author Biographies

Leobardo HERNÁNDEZ O., Universidad Autónoma de Coahuila

Faculty of Chemical Sciences

Pilar CARRANZA R., Centro de Investigación Biomédica del Noreste
Cellular and molecular biology
Luis Enrique COBOS P., Universidad Autónoma de Coahuila

Faculty of Chemical Sciences

Lluvia Itzel LÓPEZ L., Universidad Autónoma de Coahuila

Faculty of Chemical Sciences

Juan Alberto ASCASIO V., Universidad Autónoma de Coahuila

Faculty of Chemical Sciences

Sonia Yesenia SILVA B., Universidad Autónoma de Coahuila

Faculty of Chemical Sciences

References

Calderón de Rzendowski G, Rzendowski J, Acosta Castellanos S, Aguilar Rodríguez S, Aguilar Santelices R, Lerner De Scheinvar LA, et al. Flora fanerogámica del Valle de México. 2nd ed. México: Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 2005. 1406 p.

Boyd JW, Murray DS, Tyrl RJ. Silverleaf Nightshade, Solanum elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 1984;38(2):210-7.

Gutiérrez-Méndez N, Chávez-Garay DR, Jiménez-Campos H. Exploring the milk-clotting properties of a plant coagulant from the berries of S. elaeagnifolium var. Cavanilles. J. Food Sci. 2012;77(1):C89-94.

Feki H, Koubaa I, Jaber H, Makni J, Damak M. Characteristics and chemical composition of Solanum elaeagnifolium seed oil. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.). 2013;8(9):708-12.

Radwan MM, Badawy A, Zayed R, Hassanin H, ElSohly MA, Ahmed SA. Cytotoxic flavone glycosides from Solanum elaeagnifolium. Med. Chem. Res. 2015;24:1326-30.

Emmanuel S, Ignacimuthu S, Perumalsamy R, Amalraj T. Antiinflammatory activity of Solanum trilobatum. Fitoterapia. 2006;77(7-8):611-2.

Akanitapichat P, Phraibung K, Nuchklang K, Prompitakkul S. Antioxidant and hepatoprotective activities of five eggplant varieties. Food Chem. Toxicol. 2010;48(10):3017-21.

lbarrola DA, Hellión-lbarrola MC, Montalbetti Y, Heinichen O, Alvarenga N, Figueredo A, et al. Isolation of hypotensive compounds from Solanum sisymbriifolium Lam. J. Ethnopharmacol.

;70(3):301-7.

Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry. 2002;59(4):459-63.

Rashed K, Sahuc M-E, Deloison G, Calland N, Brodin P, Rouillé Y, et al. Potent antiviral activity of Solanum rantonnetii and the isolated compounds against hepatitis C virus in vitro. J Funct Foods. 2014;11:185-91.

Rowan DD, Macdonald PE, Skipp RA. Antifungal stress metabolites from Solanum aviculare. Phytochemistry. 1983;22(9):2102-4.

chirmer Pigatto AG, Mentz LA, Gonçalves Soares GL. Chemotaxonomic characterization and chemical similarity of tribes/genera of the Solanoideae subfamily (Solanaceae) based on occurrence of withanolides. Biochem. Syst. Ecol. 2014;54:40-7.

Blankemeyer JT, McWilliams ML, Rayburn JR, Weissenberg M, Friedman M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem. Toxicol. 1998;36:383-9.

Lee K-R, Kozukue N, Han J-S, Park J-H, Chang E-y, Baek E-J, et al. Glycoalkaloids and Metabolites Inhibit the Growth of Human Colon (HT29) and Liver (HepG2) Cancer Cells. J. Agric. Food. Chem. 2004;52(10):2832-9.

González AM, Presa M, Latorre MG, Lurá MC. Detección de metabolitos fúngicos con actividad tóxica mediante bioensayo sobre Artemia salina. Rev. Iberoam. Micol. 2007;24(1):59-61.

Ding X, Zhu F, Gao S. Purification, antitumour and immunomodulatory activity of water-extractable and alkali-extractable polysaccharides from Solanum nigrum L. Food Chem. 2012;131:677-84.

Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012;114(8):785-96.

García-Huertas P, Pabón A, Arias C, Blair S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad anti-Plasmodium. Biomédica. 2013;33(1):78-87.

de Graaf IAM, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, et al. Preparation and incubation of precisioncut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protocols. 2010;5(9):1540-51.

Carranza-Rosales P, Santiago-Mauricio MG, Guzmán-Delgado NE, Vargas-Villarreal J, Lozano-Garza G, Ventura-Juárez J, et al. Precision-cut hamster liver slices as an ex vivo model to study amoebic liver abscess. Exp. Parasitol. 2010;126(2):117-25.

Morin PJ. Drug resistance and the microenvironment: nature and nurture. Drug Resist Updat. 2003;6(4):169-72.

Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol. In Vitro. 2004;18(5):703-10.

López-Cobo A, Gómez-Caravaca AM, Cerretani L, SeguraCarretero A, Fernández-Gutiérrez A. Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity. J. Food Comp. Anal. 2014;36(1–2):1-11.

Zaro MJ, Ortiz LC, Keunchkarian S, Chaves AR, Vicente AR, Concellón A. Chlorogenic acid retention in white and purple eggplant after processing and cooking. LWT-FOOD SCI TECHNOL. 2015;64(2):802-8

Published
2017-11-24
How to Cite
HERNÁNDEZ O. L., CARRANZA R. P., COBOS P. L. E., LÓPEZ L. L. I., ASCASIO V. J. A., & SILVA B. S. Y. (2017). Bioguided fractionation from Solanum elaeagnifolium to evaluate toxicity on cellular lines and breast tumor explants. Vitae, 24(2), 124-131. https://doi.org/10.17533/udea.vitae.v24n2a05
Section
Natural Products