Total mercury exposure risk and selenium content measuring on fishery products consumed by women of childbearing age from Bogota, Colombia


  • Andrea del Pilar Mojica Cortes
  • Jaime Alberto Guerrero Montilla
  • Iván Camilo Sánchez Barrera
  • Jhonny Eddison Vargas Hernández Instituto Nacional de Salud
  • Luz Adriana Ruíz Pérez
  • Diana Patricia Castro Aguilar
  • Oscar Alberto Noreña Trigos
  • Ruth Castellanos García
  • Diana María Pérez Castiblanco



Women of childbearing age, Fishery products, Mercury, Selenium, Risk evaluation


Background. Dietary exposure to mercury in women of childbearing age could result in neurological effects on the fetus. A health risk assessment of total mercury by fishery products intake has not been conducted in this population group in Bogota, Colombia. On the other hand, it has been suggested that selenium content on fishery products may have a protective effect against mercury toxicity. Nevertheless, selenium content on fish species marketed in Bogotá has not been determined. Objective. Exposure risk to total mercury and selenium content on fishery products consumed by women of childbearing age from Bogota, Colombia, were assessed. Methods. Total mercury and selenium concentrations for products available at fish stores and supermarkets were determined. The exposure risk to total mercury was estimated considering the intake of these products by women of childbearing age group. Results. Total mercury highest concentrations were 0.8166 mg/kg in mota (Calophysus macropterus), and 0.6275 mg/kg in catfish (Pseudoplatystoma tigrinum). On the other hand, the highest selenium concentration was 0.6471 mg/kg in nicuro (Pimelodus blochii). Finally, it was established that for women of the childbearing age group, health risk of exposure to total mercury due to mota intake exceeded by 8.56-fold the reference dose. Conclusions. Mota intake considerably increases exposure risk to total mercury on women of childbearing age from Bogota, Colombia. The selenium levels established in the fishery products assessed, except for catfish and mota, are theoretically suggestive of a protective effect of selenium against mercury toxicity. Consequently, continuous total mercury concentrations monitoring is required to protect health of the women of childbearing age and the general population from Bogota, Colombia.

= 375 veces | PDF
= 97 veces|


Download data is not yet available.


Beckers F, Rinklebe J. Cycling of Mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Environ Sci Technol. 2017;47(9): 693-794. DOI:

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: Sources, pathways, and effects. Environ Sci Technol. 2013;47(10):4967–4983. DOI:

Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, et al. Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio. 2018;47:170–197. DOI:

Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47:116–140. DOI:

Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of Mercury. J Toxicol Environ Health B Crit Rev. 2017;20(2):55-80. DOI:

Fernandes-Azevedo B, Barros-Furieri L, Peçanha FMI, Wiggers GA, Frizera-Vassallo P, Ronacher-Simões M, et al. Toxic effects of Mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012. DOI:

Genchi G, Sinicropi M, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. Int J Environ Res Public Health. 2017;14(1):74. DOI:

Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, et al. Current progress on understanding the impact of Mercury on human health. Environ Res. 2017;152:419-433. DOI:

Kim KH, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. Hazard Mater. 2016;306:376-385. DOI:

Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M. Immunotoxicity of Mercury: Pathological and toxicological effects. J Environ Sci Heal C. 2017;35(1):29-46. DOI:

Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny A V., Skalnaya MG, et al. Molecular interaction between Mercury and selenium in neurotoxicity. Coord Chem Rev. 2017;332:30-37. DOI:

Khan MAK, Wang F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem. 2009;28(8):1567-1577. DOI:

Ralston NVC, Blackwell JL, Raymond LJ. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol Trace Elem Res. 2007;119:255–268. DOI:

Kaneko JJ, Ralston NVC. Selenium and Mercury in Pelagic Fish in the Central North Pacific Near Hawaii. Biol Trace Elem Res. 2007;119:242–254. DOI:

Ralston NVC, Raymond LJ. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 2010;278(1):112-123. DOI:

Spiller HA. Rethinking Mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Phila). 2018;56(5):313-326. DOI:

Hospital de Vista Hermosa - ESE. Caracterización de hábitos de consumo de productos de la pesca en mujeres en edad fértil de Bogotá D.C. Bogotá; 2016.

Joint FAO/WHO Expert Committee on Food Additives (JECFA). Mercury. 2011 (Accessed 17 August 2021)

Vargas-Licona PS, Marrugo-Negrete JL. Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta biol Colomb. 2019;24(2):232. DOI:

Lino AS, Kasper D, Guida YS, Thomaz JR, Malm O. Mercury and selenium in fishes from the Tapajós River in the Brazilian Amazon: An evaluation of human exposure. J Trace Elem Med Biol. 2018;48:196-201. DOI:

Grgec AS, Kljaković-Gašpić Z, Orct T, Tičina V, Sekovanić A, Jurasović J, et al. Mercury and selenium in fish from the eastern part of the Adriatic Sea: A risk-benefit assessment in vulnerable population groups. Chemosphere. 2020;261:127742. DOI:

Ulusoy Ş, Mol S, Karakulak FS, Kahraman AE. Selenium-Mercury Balance in Commercial Fish Species from the Turkish Waters. Biol Trace Elem Res. 2019;191:207–213. DOI:

Day NK, Schmidt TS, Roberts JJ, Osmundson BC, Willacker JJ, Eagles-Smith CA. Mercury and selenium concentrations in fishes of the Upper Colorado River Basin, southwestern United States: A retrospective assessment. PLoS One. 2020;15(1):e0226824. DOI:

Arcagni M, Rizzo A, Juncos R, Pavlin M, Campbell LM, Arribére MA, et al. Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina. Chemosphere. 2017;166:163-173. DOI:

Ahonen SA, Hayden B, Leppänen JJ, Kahilainen KK. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Sci Total Environ. 2018;637-638:1586-1596. DOI:

Bastos WR, Dórea JG, Bernardi JVE, Manzatto AG, Mussy MH, Lauthartte LC, et al. Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environ Res. 2016;144(Part A):73-80. DOI:

Donald DB, Wissel B, Anas MUM. Species-specific mercury bioaccumulation in a diverse fish community. Environ Toxicol Chem. 2015;34(12):2846-2855. DOI:

Poste AE, Muir DCG, Guildford SJ, Hecky RE. Bioaccumulation and biomagnification of Mercury in African lakes: The importance of trophic status. Sci Total Environ. 2015;506-507:126-136. DOI:

Wang X, Wang WX. The three ‘B’ of fish mercury in China: Bioaccumulation, biodynamics and biotransformation. Environ Pollut. 2019;250:216-232. DOI:

Ministerio de Salud y Protección Social (Minsalud). Resolución 122. Bogotá; 2012.

Gerson JR, Walters DM, Eagles-Smith CA, Bernhardt ES, Brandt JE. Do Two Wrongs Make a Right? Persistent Uncertainties Regarding Environmental Selenium-Mercury Interactions. Environ Sci Technol. 2020;54(15):9228-9234. DOI:

Gochfeld, M, Burger J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. Environ Sci Pollut Res. 2021;28:18407–18420. DOI:

Zapata-Rivera AM, Paéz-Melo MI, Mendéz-Paz F, Abrahams-Chow N, Artunduaga-Trejos YP, Ordoñez J. Exploratory Study on the Evaluation of Health Risk in Lactating Mothers due to Contaminated Fish Consumption from the Cauca River, Valle del Cauca (Colombia). Ambiente y Desarrollo. 2018;22(43). DOI:

Díaz SM, Palma RM, Muñoz MN, Becerra-Arias C, Niño JAF. Factors associated with high mercury levels in women and girls from the Mojana region, Colombia, 2013–2015. Int J Environ Res Public Health. 2020;17(6):1827. DOI:




How to Cite

Mojica Cortes, A. del P., Guerrero Montilla, J. A., Sánchez Barrera, I. C., Vargas Hernández, J. E., Ruíz Pérez, L. A., Castro Aguilar, D. P., Noreña Trigos, O. A., Castellanos García, R., & Pérez Castiblanco, D. M. (2021). Total mercury exposure risk and selenium content measuring on fishery products consumed by women of childbearing age from Bogota, Colombia. Vitae, 28(3).



Foods: Science, Engineering and Technology