Phytochemistry and Antiviral Properties of Two Lotus Species ‎Growing in Egypt

Antimicrobial Activity of Two Lotus Species ‎

Authors

  • Ahmed Mohamed Mohamed Youssef Department of Pharmacology, Faculty of Pharmacy, Mutah University, Mutah, Karak,Jordan https://orcid.org/0000-0002-3299-6047
  • Zeinb Ahmad Said EL-Swaify EL-Swaify Department of Botany, Faculty of Science, Al-Azhar, University, Girl Branch, ‎Cairo, Egypt.
  • Doaa Ahmed ‎Mohamed Maaty Department of Botany, Faculty of Science, Al-Azhar, University, Girl Branch, ‎Cairo, Egypt.
  • Mohamed Mohamed Youssef Department of Botany, Faculty of Science, Al-Azhar, University, Girl Branch, ‎Cairo, Egypt.

DOI:

https://doi.org/10.17533/udea.vitae.v28n3a348069

Keywords:

Antimicrobial activity, Phytochemistry, Lotus arabicus, Lotus glaber, Antiviral Effects

Abstract

Background: Lotus arabicus L and Lotus glaber Mill. belong to the family Fabaceae, and they grow in the wild in ‎Egypt and have different therapeutic uses in folk medicine. Objectives: This study aimed to evaluate the phytochemical profile and ‎antimicrobial properties of the methanolic extracts of two Lotus spp. growing in Egypt, L. arabicus and L. glaberMaterial and methods: Gas chromatography-mass spectrometry was used to identify the compounds of the extracts of two Lotus species. An MTT colorimetric assay and the disc diffusion method were performed to investigate the antiviral and antimicrobial activities of two lotus species, respectively. Results: The n-hexane and methanol extracts of L. arabicuscontained high percentages of alkane hydrocarbons, such as 5-methyloctadecane, ‎while L. glaber contained dodecane. The major compounds in the methanol extract of L. arabicus were hexadecanoic acid methyl ester and dodecanoic acid,2,3-bis(acetyloxy)propyl ‎ester. The major compounds in the methanol extract of L. glaber were palmitic acid and ‎lucenin 2. The indole alkaloid ditaine was found only in L. arabicus. This alkaloid was ‎identified for the first time in the genus Lotus. The antimicrobial properties of the extracts of ‎the two Lotus species showed that the n-hexane extract of ‎both Lotus species may have potential antifungal activity against Candida parapsilosis and ‎Aspergillus flavus. Moreover, the methanolic extracts of both Lotus species have potential ‎antiviral activity against the coxsackie B virus, but only the L. arabicus extract showed ‎activity against the hepatitis A virus.‎ Conclusion: Lotus arabicus might have potential antifungal or antiviral activity greater than L. glaber.

|Abstract
= 512 veces | PDF
= 214 veces| | HTML
= 2 veces|

Downloads

Download data is not yet available.

References

‎ L. Boulos. Flora of Egypt‎. Vol. 1., Al Hadara Publishing‎, Cairo; 1999

‎2.‎ Girardi FA, et al. Phytochemical profile and antimicrobial properties of Lotus ‎spp.(Fabaceae). An Acad Bras Cienc. 2014;86:1295-1302. DOI: https://doi.org/10.1590/0001-3765201420130220

‎3.‎ El Mousallami A M, Afifi M S, and Hussein SA. Acylated flavonol diglucosides from Lotus ‎polyphyllos. Phytochemistry. 2002; 60:807-811.‎ DOI: https://doi.org/10.1016/S0031-9422(02)00177-2

‎4.‎ Hedqvist H, et al.Characterisation of tannins and in vitro protein digestibility of several ‎Lotus corniculatus varieties. Anim Feed Sci Technol. 2000;87:41-56.‎ DOI: https://doi.org/10.1016/S0377-8401(00)00178-4

‎5.‎ Acuña H, Concha A and Figueroa M. Condensed tannin concentrations of three Lotus ‎species grown in different environments. Chil J Agric Res. 2008;68:31-41.‎ DOI: http://dx.doi.org/10.4067/S0718-58392008000100004.

‎6.‎ Strittmatter C D, et al. Identification of Lotus tenuis (Waldst et Kit.) flavonoids. Biochem ‎Syst Ecol.1992; 20 :685-687.‎ DOI: https://doi.org/10.1016/0305-1978(92)90025-9

‎7.‎ Reynaud J and Lussignol M. The flavonoids of Lotus corniculatus. Lotus Newsletter. 2005; ‎‎35:75-82.‎

‎8.‎ Abdel-Kader M S, et al. A new 3-arylcoumarin from the roots of an Egyptian collection of ‎Lotus polyphyllos. Nat Prod Res. 2008;22:448-452.‎ DOI: https://doi.org/10.1080/14786410701591812

‎9.‎ Zhao H, et al. A new galloyl glycoside from Lotus corniculatus. Nat Prod Res. 2019; 33:‎‎1158-1161. DOI: ‎ https://doi.org/10.1080/14786419.2018.1460839

‎10.‎ El-Ghani A, et al. Phytochemical and biological studies of Lotus corniculatus var. ‎tenuifolius L. growing in Egypt. Alex J Pharm Sci. 2001;15:103-108.‎

‎11.‎ Robbins M P, et al. Sn, a maize bHLH gene, modulates anthocyanin and condensed ‎tannin pathways in Lotus corniculatus. J Exp Bot. 2003; 54:239-248.‎ DOI: https://doi.org/10.1093/jxb/erg022

‎12.‎ Rizk A, et al. Constituents of plant growing in Qatar. Pharmazie. 1982; 37:737-738.‎

‎13.‎ Goverde M, et al. Positive effects of cyanogenic glycosides in food plants on larval ‎development of the common blue butterfly. Oecologia. 2008;157:409-418.‎ DOI: http://doi.org/10.1007/s00442-008-1096-9

‎ Dalmarco J B, et al. Isolation and identification of bioactive compounds responsible for ‎the anti-bacterial efficacy of Lotus corniculatus var. São Gabriel. Int J Green Pharm. 2010; ‎‎4:DOI: http://doi.org/10.22377/IJGP.V4I2.130

‎15.‎ Salman S M, et al. Preliminary phytochemical, essential element analysis and ‎antimicrobial activities of ethanolic extract of Lotus corniculatus. IJB. 2015;7:106-115.‎ DOI: http://dx.doi.org/10.12692/ijb/7.2.106-115

‎16.‎ Anani K, et al. Investigation of medicinal plants of Togo for antiviral and antimicrobial ‎activities. Pharm Biol. 2000;38:40-45.‎ DOI: https://doi.org/10.1076/1388-0209(200001)3811-BFT040

‎17.‎ Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to ‎proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63.‎ DOI: https://doi.org/10.1016/0022-1759(83)90303-4

‎18.‎ Cinatl J, et al. Antiviral effects of 6-diazo-5-oxo-l-norleucin on replication of herpes ‎simplex virus type 1. Antivir Res. 1997; 33: 165-175.‎ DOI: https://doi.org/10.1016/S0166-3542(96)01012-1

‎19.‎ Okba M M, El Gedaily R A and Ashour R M. UPLC-PDA-ESI-qTOF-MS profiling and ‎potent anti-HSV-II activity of Eucalyptus sideroxylon leaves. J Chromatogr B Analyt Technol Biomed Life S. 2017; 1068-1069: 335-342. DOI: https://doi.org/10.1016/j.jchromb.2017.10.065‎

‎20.‎ Sun Q, et al. In vitro anti-viral effect of fructopyrano-(1→ 4)-glucopyranose from Radix ‎isatidis on infuenza virus A. Bangladesh Journal of Pharmacology. 2012; 7:145-149.‎ DOI: https://doi.org/10.3329/bjp.v7i3.11228

‎21.‎ Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J clin ‎pathol. 1966; 45:149-158.‎

‎22.‎ Kokoska L, et al. Screening of some Siberian medicinal plants for antimicrobial activity. J ‎Ethnopharmacol. 2002; 82:51-53.‎ DOI: https://doi.org/10.1016/s0378-8741(02)00143-5

‎23.‎ Aber R C, Wennersten C and Moellering RC. Antimicrobial Susceptibility of ‎Flavobacteria. Antimicrob Agents Chemother. 1978;14:483-487. ‎DOI: https://doi.org/10.1128/aac.14.3.483

‎24.‎ Demirkol G. Antibacterial activity of the seeds, roots and shoots of lotus populations. ‎Legume Res. 2018 ; 41:778-783.‎ DOI: https://doi.org/10.18805/LR-408

Khobjai W, Jarmkom K, Wisidsri N and Techaoei S. Gas Chromatography Mass Spectrometry Application to Investigate of Phytonutrient Different Parts of Lotus. Int J Food Eng. 2021;7. DOI: https://doi.org/10.18178/ijfe.7.2.35-40

Manzano Santana P, et al. Effect of drying methods on physical and chemical properties of Ilex guayusa leaves. Rev Fac Agron Medellin. 2018;71:8617-22. DOI: https://doi.org/10.15446/rfnam.v71n3.71667

Mohy El-Din S M and Mohyeldin M M. Component analysis and antifungal activity of the compounds extracted from four brown seaweeds with different solvents at different seasons. J Ocean Univ China. 2018; 17: 1178-1188. DOI: https://doi.org/10.1007/s11802-018-3538-2

Zubair M S, Khairunisa S Q, Widodo A and Pitopang R. Antiviral screening on Alpinia eremochlamys, Etlingera flexuosa, and Etlingera acanthoides extracts against HIV-infected MT-4 cells. Heliyon. 2021;7: 06710. DOI: https://doi.org/10.1016/j.heliyon.2021.e06710

Samra R M, Soliman A F, Zaki A A, Hassan M A, and Zaghloul A M. Antiviral Components from Cleome droserifolia and Lotus creticus. Indian J Sci Technol. 2020; 13:2866-2875. DOI: https://doi.org/10.17485/IJST/v13i28.980

Hamed A N, et al. Flavonoidal glycosides and in vitro antioxidant activity of Bignonia binata Thunb. leaves Family Bignoniaceae and in silico evidence of their potential anti-COVID-19 activity. J Adv Biomed Pharm. Sci. 2021; 4: 98-106. DOI: https://doi.org/10.21608/JABPS.2021.59606.1118

The antiviral effects of the methanol extracts of L. arabicus and L. glaber on ‎Vero cells infected with HAV and COXB4

Downloads

Published

28-12-2021

How to Cite

Youssef, A. M. M., EL-Swaify , Z. A. S. E.-S. ., Maaty, D. . A. ‎Mohamed ., & Youssef , M. M. . (2021). Phytochemistry and Antiviral Properties of Two Lotus Species ‎Growing in Egypt: Antimicrobial Activity of Two Lotus Species ‎. Vitae, 28(3). https://doi.org/10.17533/udea.vitae.v28n3a348069

Issue

Section

Natural Products