Antioxidant and Acetylcholinesterase Inhibitor Potentials of the Stem Extract of Pternandra galeata

Authors

  • Suciati Suciati Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia.
  • Dwiki Nur Inayah Center for Natural Product Medicine Research and Development, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, 60115, East Java, Indonesia.
  • Aty Widyawaruyanti Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia.
  • Rudiyansyah Rudiyansyah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Kubu Raya 78115, West Kalimantan, Indonesia.

DOI:

https://doi.org/10.17533/udea.vitae.v29n3a349983

Keywords:

Pternandra galeata, Alzheimer's disease, Acetylcholinesterase inhibitor, Antioxidant, Phenolic compounds

Abstract

Background: Pternandra galeata belongs to the family Melastomataceae. It is a native flowering plant in Borneo Island that serve as food for monkey habitat. There has been limited study on the medicinal and chemical properties of this plant. Objectives: We investigated the acetylcholinesterase inhibitory activity and evaluated the antioxidant activity of the ethanolic extract of Pternandra galeata stem. The total phenolic content in the sample was also determined. Methods: The acetylcholinesterase inhibitory assays were performed using Ellman’s method. Two different methods were used to evaluate the antioxidant activity of 2,2-diphenyl-1-picryl hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The total phenolic content was determined by the Folin-Ciocalteu method by employing gallic acid as a reference. Results: The ethanolic extract of the P. galeata stems inhibited the AChE enzyme with an IC50value of 74.62 ± 0.89 µg/mL. The sample exhibited antioxidant activity in the DPPH assay with an IC50 value of 20.21 ± 0.08 µg/mL and 7.68 ± 0.09µg/mL in the ABTS scavenging assay. The total phenolic content was 164.71 ± 3.33
mg GAE/g extract. ConclusionThe ethanolic extract of the P. galeata stem can be a promising cholinesterase inhibitor and antioxidant for treating Alzheimer’s disease.
|Abstract
= 568 veces | PDF
= 342 veces| | HTML
= 1 veces|

Downloads

Download data is not yet available.

References

Marchesi VT. Alzheimer’s disease 2012: The great amyloid gamble. Am J Pathol. 2012; 180:1762–1767. https://doi.org/10.1016/j.ajpath.2012.03.004

Alzheimer's Association. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700-789. https://doi.org/10.1002/alz.12638

Alzheimer's Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16(3):391-460. https://doi.org/10.1002/alz.12068

Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101-15. https://doi.org/10.2174/1570159x13666150716165726

Konrath EL, Passos CDS, Klein-Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol. 2013; 65(12): 1701-1725. https://doi.org/10.1111/jphp.12090

Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000; 71(2): 621S-629S. https://doi/org/10.1093/ajcn/71.2.621s

Halliwell B. Role of free radicals in neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging. 2001; 18(9): 685-716. https://doi.org/10.2165/00002512-200118090-00004

Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008; 4(2): 89-96.

Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in alzheimer’s disease brain. A review. Free Radic Res. 2002;36(12):1307-1313. https://doi.org/10.1080/1071576021000049890

Mukhlisi, T. Atmoko, Priyono. Flora di Habitat Bekantan Lahan Basah Suwi, Kalimantan Timur. Susilo A and Iskandar S (eds). Balikpapan: Forda Press; 2018.118p.

Wardana F, Sari D, Adianti M, Permanasari A, Tumewu L, Nozaki T, Widyawaruyanti A, Hafid AF. Amoebicidal activities of Indonesian medicinal plants in Balikpapan, East Kalimantan. Proceedings of BROMO Conference. ScitePress: 2019;77-82.

Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Suciati, Laili ER, Poerwantoro D, Hapsari AP, Gifanda LZ, Rabgay K, Ekasari W, Ingkaninan K. Evaluation of cholinesterase inhibitory activity of six Indonesian Cassia species. J Res Pharm. 2020; 24(4): 472-478. http://dx.doi.org/10.35333/jrp.2020.195

Aristyawan AD, Setyaningtyas VF, Wahyuni TS, Widyawaruyanti A, Ingkaninan K, Suciati S. In vitro acetylcholinesterase inhibitory activities of fractions and iso-agelasine C isolated from the marine sponge Agelas nakamurai. J Res Pharm. 2022; 26(2): 279-286. http://dx.doi.org/10.29228/jrp.126

Herald TJ, Gadgil P, Tilley M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric. 2012;92(11):2326-2331. https://doi.org/10.1002/jsfa.5633

Lee KJ, Oh YC, Cho WK, Ma JY. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evid Based Complement Alternat Med. 2015;2015: 165457. https://doi.org/10.1155/2015/165457

Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol. 2006; 18: 445–450. https://doi.org/10.1007/s10811-006-9048-4

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181:1199-1200. https://doi.org/10.1038/1811199a0

Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):211- 219.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012:728983. https://doi.org/10.1155/2012/728983

Danta CC, Piplani P. The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases. Expert Opin Drug Discov. 2014;9:1205–1222. https://doi.org/10.1517/17460441.2014.942218

Zhao Y, Zhao B. Natural antioxidants in prevention management of Alzheimer’s disease. Front Biosci (Elite Ed). 2012;1:794–808. https://doi.org/10.2741/e419

Suganthy N, Devi KP. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm Biol. 2016;5 4(1): 118-29. https://doi.org/10.3109/13880209.2015.1017886

Giacobini E. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochem Res, 2003; 28 (3-4):515–522. https://doi.org/10.1023/a:1022869222652

Lopa SS, Al-Amin MY, Hasan MK, Ahammed MS, Islam KM, Alam AHMK, Tanaka T, Sadik MG. Phytochemical analysis and cholinesterase inhibitory and antioxidant activities of Enhydra fluctuans relevant in the management of Alzheimer's disease. Int J Food Sci. 2021;2021:8862025. https://doi.org/10.1155/2021/8862025

Niño J, Hernández JA, Correa YM, Mosquera OM. In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora. Mem Inst Oswaldo Cruz. 2006;101(7):783-5. https://doi.org/10.1590/s0074-02762006000700013

Chan WR, Sheppard V, Medford KA, Tinto WF, Reynolds WF, McLean S. Tritepenes from Miconia stenostachya. J Nat Prod. 1992; 55: 963-966. https://doi.org/10.1021/np50085a020

Calderón AI, Simithy J, Quaggio G, Espinosa A, López-Pérez JL, Gupta MP. Triterpenes from Warszewiczia coccinea (Rubiaceae) as inhibitors of acetylcholinesterase. Nat Prod Commun. 2009; 4(10):1323-1326.

Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019;24(22):4132. https://doi.org/10.3390/molecules24224132

Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841-56. https://doi.org/10.1021/jf030723c

Magalhães LM, Segundo MA, Reis S, Lima JL. Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta. 2008;613(1):1-19. https://doi.org/10.1016/j.aca.2008.02.047

Ramadhan R, Kristanti AN, Amirta R, Kusuma IW, Phuwapraisirisan P, Haqiqi MT, Saparwadi. Screening for potential antidiabetes and antioxidant activities of selected plants from East Kalimantan, Indonesia. Biodiversitas. 2019;20:1820-1826. https://doi.org/10.13057/biodiv/d200705

Falé PLV, Ascensão L, Serralheiro ML, Haris PI. Interaction between Plectranthus barbatus herbal tea components and acetylcholinesterase: binding and activity studies. Food Funct. 2012;3:1176‐1184. https://doi.org/10.1039/C2FO30032J

Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer's disease. CNS Neurosci Ther. 2018;24(9):753-762. https://doi.org/10.1111/cns.12971

Jothy SL, Aziz A, Chen Y, Sasidharan S. Antioxidant activity and hepatoprotective potential of Polyalthia longifolia and Cassia spectabilis leaves against paracetamol-induced liver injury. Evid Based Complement Alternat Med. 2012;2012:561284. https://doi.org/10.1155/2012/561284

DPPH and ABTS radical scavenging effects of different concentrations of P. galeata extract

Downloads

Published

08-10-2022

How to Cite

Suciati, S., Inayah, D. N., Widyawaruyanti, A., & Rudiyansyah, R. (2022). Antioxidant and Acetylcholinesterase Inhibitor Potentials of the Stem Extract of Pternandra galeata. Vitae, 29(3). https://doi.org/10.17533/udea.vitae.v29n3a349983

Issue

Section

Natural Products