Formaldehyde: A Literature Review on Biomarkers of Effect for Measuring Occupational Exposure

Authors

DOI:

https://doi.org/10.17533/udea.rfnsp.v37n3a09

Keywords:

formaldehyde, biomarkers, occupational exposure, adverse effects, occupational hazards, occupational safety, DNA adducts, Colombia

Abstract

Despite the large amounts of formaldehyde used in the industry, monitoring the health effects of occupational exposure remains an aspect of further improvement in occupational risk prevention programs. Objective: To identify the different biomarkers of effect that have been proposed to be used as indirect indicators of formaldehyde exposure and that are reported in the scientific literature. Methodology: A bibliographic review of literature from 1990 to the first quarter of 2018 was made using the descriptors: "Formaldehyde", "Biomarker", "Professional exposure". Databases were consulted and the initial search was supplemented by consulting the bibliography cited by the authors of the selected articles. Abstracts of articles were reviewed and those that, after preliminary analysis, were determined to contain information relevant to the research were selected. Results: The study found 57 articles relevant to the review which contained information on biomarkers of effect in populations of workers exposed to formaldehyde, some animal studies, and in vitro cells. Used biomarkers were summarized, studies were listed, and the findings of each of them were briefly described. Conclusions: The lack of knowledge and understanding of the toxicokinetic and toxicodynamic mechanisms of formaldehyde in humans limits the application of a biomarker of effect that measures in a practical and simple way exposure to exogenous formaldehyde  

|Abstract
= 725 veces | PDF (ESPAÑOL (ESPAÑA))
= 457 veces|

Downloads

Download data is not yet available.

Author Biographies

Iván Rodrigo Astros Fonseca, National University of Colombia

Chemical Engineer. Specialist in Safety and Health at Work, Faculty of Medicine, National University of Colombia.

David Andrés Combariza Bayona, National University of Colombia

Doctor, specialist in Occupational Medicine and Epidemiology, Master in Toxicology, Faculty of Medicine, National University of Colombia.

References

ToxLogic. Review of 2016 acgih Formaldehyde : tlv (R) Chemical Substances Draft Documentation , Notice of Intended Change. Gaithersburg; 2016. pp. 1-8.

International Agency for Research on Cancer (iarc). Chemical Agents and Related Occupations. Vol. 100 F. A Review of Human Carcinogens. iarc monographs on the evaluation of carcinogenic risks to humans. 2012.

International Agency for Research on Cancer (iarc). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol [internet]. IARC Monogr Eval Carcinog Risks Hum. 2006 [citado 2018 sep. 3]; 88:1-390. Disponible en: https://monographs.iarc.fr/ wp-content/uploads/2018/06/mono88.pdf.

Dietrich CJ, Richards IS, Bernard TE, et al. Human stress protein response to formaldehyde exposure. Exp. Toxicol. Pathol. [internet]. 1996 [citado 2018 mar. 18]; 48(6):518-9. doi: http:// dx.doi.org/10.1016/S0940-2993(96)80071-6.

Casas J, Araque L, Herrera D. Caracterización de la exposición ocupacional a formaldehído en trabajadores del sector salud y educación en Colombia 2004-2013 [Tesis de Maestría] [internet]. Bogotá: Universidad del Rosario; 2015 [citado 2018 abr. 18]. Disponible en: http://repository.urosario.edu.co/ handle/10336/10667/.

Golalipour MJ, Azarhoush R, Ghafari S, et al. Can formaldehyde exposure induce histopathologic and morphometric changes on rat kidney? Int. J. Morphol. 2009;27(4):1195-200.

Mitkus RJ, Hess MA, Schwartz SL. Pharmacokinetic modeling as an approach to assessing the safety of residual formaldehyde in infant vaccines. Vaccine. 2013;31(25):2738-43.

Cardozo R, Peñalver C, Rivas B, et al. Características epidemiológicas y ocupacionales de trabajadores expuestos al formaldehído en centros asistenciales. Inf Médico [internet]. 2007 [citado 2017 feb. 7]; 9(7):365-73. Disponible en: http://ezproxy. unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?di rect=true&db=a9h&AN=26615157&lang=es&site=eds-live. De acceso restringido.

Kleinnijenhuis AJ, Staal YCM, Duistermaat E, et al. The determination of exogenous formaldehyde in blood of rats during and after inhalation exposure. Food Chem. Toxicol. [internet]. 2013 [citado 2018 mar. 18]; 52:105-12. doi: http://dx.doi. org/10.1016/j.fct.2012.11.008.

Riess U, Tegtbur U, Fauck C, et al. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath. Anal. Chim. Acta [internet]. 2010 [citado 2018 mar. 18]; 669(1-2):53-62. doi: http://dx.doi.org/10.1016/j.aca.2010.04.049.

Gil Hernández F. El papel de los biomarcadores en toxicología humana [internet]. Granada: Departamento de Medicina Legal, Facultad de Medicina de la Universidad de Granada; 2000. Disponible en: https://www.ugr.es/~fgil/ biomarcadoresrevtoxicol.pdf.

Regazzoni LG, Grigoryan H, Ji Z, et al. Using lysine adducts of human serum albumin to investigate the disposition of exogenous formaldehyde in human blood. Toxicol. Lett. 2017;268:26-35. doi: http://dx.doi.org/10.1016/j.toxlet.2017.01.002.

Fenech M, Nersesyan A, Knasmueller S. A systematic review of the association between occupational exposure to formaldehyde and effects on chromosomal dna damage measured using the cytokinesis-block micronucleus assay in lymphocytes. Mutat. Res. 2016;770:46-57. doi: http://dx.doi.org/10.1016/j. mrrev.2016.04.005.

Yu R, Lai Y, Hartwell HJ, et al. Formation, accumulation, and hydrolysis of endogenous and exogenous formaldehyde-induced dna damage. Toxicol. Sci. [internet]. 2015 [citado 2017 may. 14]; 146(1):170-82. doi: http://dx.doi.org/10.1093/toxsci/kfv079.

Costa S, Carvalho S, Costa C, et al. Increased levels of chromosomal aberrations and dna damage in a group of workers exposed to formaldehyde. Mutagenesis [internet]. 2015 [citado 2017 abr. 18]; 30(4):463-73. doi: http://dx.doi.org/10.1093/ mutage/gev002.

Lin D, Guo Y, Yi J, et al. Occupational exposure to formaldehyde and genetic damage in the peripheral blood lymphocytes of plywood workers. J. Occup. Health. 2013;55(4):284-91.

Edrissi B, Taghizadeh K, Moeller BC, et al. Dosimetry of N6 - formyllysine adducts following [13C2 H2 ]-formaldehyde exposures in rats. Chem. Res. Toxicol. 2013;26(10):1421-3. doi: http:// dx.doi.org/10.1021/tx400320u.

Viegas S, Nunes C, Malta-Vacas J, et al. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production. J. Occup. Med. Toxicol. [internet]. 2010 [citado 2017 may. 14]; 5(1):25-32. doi: http://dx.doi.org/10.1186/1745-6673-5-25.

Persoz C, Achard S, Leleu C, et al. An in vitro model to evaluate the inflammatory response after gaseous formaldehyde exposure of lung epithelial cells. Toxicol Lett. 2010;195:99-105.

Malek FA, Möritz KU, Fanghänel J. A study on specific behavioral effects of formaldehyde in the rat. J. Exp. Anim. Sci. 2003;43(3):160-70.

Malek FA, Möritz K-U, Fanghänel J. Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice. Int J Hyg Environ Health [internet]. 2004 [citado 2017 abr. 18]; 207:151- 8. doi: http://dx.doi.org/10.1016/S0939-8600(03)80009-3.

Noisel N, Bouchard M, Carrier G. Evaluation of the health impact of lowering the formaldehyde occupational exposure limit for Quebec workers. Regul. Toxicol. Pharmacol. 2007;48(2):118-27. doi: http://dx.doi.org/10.1016/j.yrtph.2007.02.001.

Bono R, Romanazzi V, Pirro V, et al. Formaldehyde and tobacco smoke as alkylating agents: The formation of N-methylenvaline in pathologists and in plastic laminate workers. Sci. Total Environ. [internet]. 2012 [citado 2018 mar. 18]; 414:701-7. doi: http:// dx.doi.org/10.1016/j.scitotenv.2011.10.047.

Pala M, Ugolini D, Ceppi M, et al. Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detect. Prev. 2008;32(2):121-6. doi: http:// dx.doi.org/10.1016/j.cdp.2008.05.003.

Rager JE, Moeller BC, Miller SK, et al. Formaldehyde-associated changes in micrornas: Tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol. Sci. 2014;138(1):36-46. doi: http://dx.doi.org/10.1093/toxsci/kft267.

Amiri A, Turner-Henson A. The roles of formaldehyde exposure and oxidative stress in fetal growth in the second trimester. J. Obstet. Gynecol. Neonatal. Nurs. [internet]. 2017 [citado 2018 mar. 18]; 46(1):51-62. doi: http://dx.doi.org/10.1016/j. jogn.2016.08.007.

Romanazzi V, Pirro V, Bellisario V, et al. 15-F2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci Total Environ [internet]. 2013;442:20-25. doi: http://dx.doi.org/10.1016/j.scitotenv.2012.10.057.

Zhong W, Que Hee SS. Formaldehyde-induced dna adducts as biomarkers of in vitro human nasal epithelial cell exposure to formaldehyde. Mutat. Res. 2004;563(1):13-24. doi: http://dx.doi. org/10.1016/j.mrgentox.2004.05.012.

Bono R, Vincenti M, Schiliro’ T, et al. N-Methylenvaline in a group of subjects occupationally exposed to formaldehyde. Toxicol. Lett. 2006;161(1):10-17. doi: http://dx.doi.org/10.1016/j. toxlet.2005.07.016.

Zhang L, Tang X, Rothman N, et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol. Biomarkers Prev. 2010;19(1):80-88. doi: http://dx.doi. org/10.1158/1055-9965.EPI-09-0762.

Zhang L, Steinmaus C, Eastmond DA, et al. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat. Res. 2009;681(2-3):150-68. doi: http:// dx.doi.org/10.1016/j.mrrev.2008.07.002.

Wei C, Chen M, You H, et al. Formaldehyde and co-exposure with benzene induce compensation of bone marrow and hematopoietic stem/progenitor cells in balb/c mice during post-exposure period. Toxicol Appl Pharmacol [internet]. 2017 [citado 2018 mar. 18]; 324:36-44. doi: http://dx.doi.org/10.1016/j.taap.2017.03.024.

Seow WJ, Zhang L, Vermeulen R, et al. Circulating immune/ inflammation markers in Chinese workers occupationally exposed to formaldehyde. Carcinogenesis. 2015;36(8):852-7. doi: http:// dx.doi.org/10.1093/carcin/bgv055.

Wen H, Yuan L, Wei C, et al. Effects of combined exposure to formaldehyde and benzene on immune cells in the blood and spleen in balb/c mice. Environ. Toxicol. Pharmacol. [internet]. 2016 [citado 2018 mar. 18]; 45:265-73. doi: http://dx.doi. org/10.1016/j.etap.2016.05.007.

Zhang J, Sun R, Chen Y, et al. Small molecule metabolite biomarker candidates in urine from mice exposed to formaldehyde. Int J Mol Sci. 2014;15(9):16458-68. doi: https://doi.org/10.3390/ ijms150916458.

Bassig BA, Zhang L, Vermeulen R, et al. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene. Carcinogenesis. 2016;37(7):692-700. doi: http://dx.doi. org/10.1093/carcin/bgw053.

Murta GL, Campos KKD, Bandeira ACB, et al. Oxidative effects on lung inflammatory response in rats exposed to different concentrations of formaldehyde. Environ. Pollut. 2016;211:206- 13. doi: http://dx.doi.org/10.1016/j.envpol.2015.12.054.

Ramos C de O, Nardeli CR, Campos KKD, et al. The exposure to formaldehyde causes renal dysfunction, inflammation and redox imbalance in rats. Exp Toxicol Pathol [internet]. 2017 [citado 2018 mar. 18]; 69(6):367-72. doi: http://dx.doi.org/10.1016/j. etp.2017.02.008.

Ladeira C, Viegas S, Carolino E, et al. Genotoxicity biomarkers in occupational exposure to formaldehyde--The case of histopathology laboratories. Mutat. Res. [internet]. 2011 [citado 2018 mar. 18]; 721(1):15-20. doi: http://dx.doi.org/10.1016/j. mrgentox.2010.11.015

Costa S, Costa C, Silva S, et al. Cytogenetic alterations in formaldehyde exposed workers measured in a target and distal tissue. Toxicol. Lett. [internet]. 2013;221(2013):S63. Disponible en: https://www.sciencedirect.com/science/article/ pii/S0378427413002294?via%3Dihub, doi: http://dx.doi. org/10.1016/j.toxlet.2013.05.029.

Ladeira C, Gomes MC, Brito M. 75 XRCC3 Thr241Met polymorphism influence on genotoxicity biomarkers frequency in workers occupationally exposed to formaldehyde. Eur. J. Cancer [internet]. 2010 [citado 2018 mar. 18]; Supl. 8(5):20. Disponible en: http://www.embase.com/search/results?subactio n=viewrecord&from=export&id=L70192583%5Cnhttp://dx.doi. org/10.1016/S1359-6349(10)70884-3%5Cnhttp://sfx.library. uu.nl/utrecht?sid=EMBASE&issn=13596349&id=doi:10.1016/ S1359-6349(10)70884-3&atitle=XRCC3+Thr241Met+. Acceso restringido.

Rivera C, Rosales J. Genotoxic damage and occupational exposure to formaldehyde in anatomic pathology laboratory workers. Toxicol. Lett. [internet]. 2015 [citado 2018 mar. 18]; 238(2, Supl.):S103. doi: https://doi.org/10.1016/j.toxlet.2015.08.339.

Li Q, Mei Q, Huyan T, et al. Effects of formaldehyde exposure on human nk cells in vitro. Environ Toxicol Pharmacol. 2013;36(3):948-55. doi: https://doi.org/10.1016/j. etap.2013.08.005.

Hosgood III HD, Zhang L, Tang X, et al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets. Am. J. Ind. Med. 2013;56(2):252-7. doi: https://doi.org/10.1002/ajim.22088.

Costa S, Costa C, García-Léston J, et al. Human exposure to formaldehyde, a risk evaluation of occupational health effects. Toxicol Lett [internet]. 2014 [citado 2018 mar. 18]; 229:S116. Disponible en: http://www.embase.com/search/results?subactio n=viewrecord&from=export&id=L71631238%5Cnhttp://dx.doi. org/10.1016/j.toxlet.2014.06.419%5Cnhttp://sfx.library.uu.nl/utr echt?sid=EMBASE&issn=03784274&id=doi:10.1016/j.toxlet.20 14.06.419&atitle=Human+exposure+to+. Acceso restringido.

Zendehdel R, Fazli Z, Mazinani M. Neurotoxicity effect of formaldehyde on occupational exposure and influence of individual susceptibility to some metabolism parameters. Environ Monit Assess. 2016; 188(1):648. doi: http://dx.doi.org/10.1007/ s10661-016-5662-z.

Lan Q, Smith MT, Tang X, et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis [internet]. 2015 [citado 2017 may. 14]; 36(1):160-7. doi: http:// dx.doi.org/10.1093/carcin/bgu229.

Peteffi GP, Antunes MV, Carrer C, et al. Environmental and biological monitoring of occupational formaldehyde exposure resulting from the use of products for hair straightening. Environ. Sci. Pollut. Res. 2016;23(1):908-17. doi: http://dx.doi. org/10.1007/s11356-015-5343-4.

Jakab MG, Klupp T, Besenyei K, et al. Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments. Mutat. Res. 2010;698(1-2):11-17. doi: http://dx.doi.org/10.1016/j. mrgentox.2010.02.015.

Jiang S, Yu L, Cheng J, et al. Genomic damages in peripheral blood lymphocytes and association with polymorphisms of three glutathione S-transferases in workers exposed to formaldehyde. Mutat. Res. [internet]. 2010 [citado 2018 mar. 18]; 695(1-2):9-15. doi: http://dx.doi.org/10.1016/j.mrgentox.2009.09.011.

Shaham J, Bomstein Y, Gurvich R, et al. dna-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup. Environ. Med. 2003;60(6):403-9. doi: http://dx.doi.org/10.1136/oem.60.6.403.

Costa S, Coelho P, Costa C, et al. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde. Toxicology. 2008;252(1-3):40-8. doi: http://dx.doi.org/10.1016/j. tox.2008.07.056.

Ladeira C, Gomes MC, Brito M. 74 Genotoxicity biomarkers in occupational exposure to formaldehyde in pathology anatomy laboratories. Eur. J. Cancer. Suppl. [internet]. 2010;8(5):19. doi: http://dx.doi.org/10.1016/S1359-6349(10)70883-1.

Ji Z, Li X, Fromowitz M, et al. Formaldehyde induces micronuclei in mouse erythropoietic cells and suppresses the expansion of human erythroid progenitor cells. Toxicol. Lett. [internet]. 2014 [citado 2018 mar. 18]; 224(2):233-9. doi: http://dx.doi. org/10.1016/j.toxlet.2013.10.028.

Pontel LB, Rosado IV, Burgos-Barragan G, et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell. [internet]. 2015 [citado 2017 may. 14]; 60(1):177-88. doi: http://dx.doi.org/10.1016/j. molcel.2015.08.020.

Lu J, Miao J, Su T, et al. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo. Biochim. Biophys. Acta – Gen. Subj. [internet]. 2013;1830(8):4102-16. doi: http://dx.doi.org/10.1016/j. bbagen.2013.04.028.

Luo FC, Zhou J, Lv T, et al. Induction of endoplasmic reticulum stress and the modulation of thioredoxin-1 in formaldehydeinduced neurotoxicity. Neurotoxicology. 2012;33(3):290-8. doi: http://dx.doi.org/10.1016/j.neuro.2012.02.004.

Zeller J, Neuss S, Mueller JU, et al. Assessment of genotoxic effects and changes in gene expression in humans exposed to formaldehyde by inhalation under controlled conditions. Mutagenesis. 2011;26(4):555-61. doi: http://dx.doi.org/10.1093/ mutage/ger016.

Ministerio de Ambiente Vivienda y Desarrollo Territorial de Colombia. Guías para manejo seguro y gestión ambiental de 25 sustancias químicas. Bogotá: Publicaciones MinAmbiente; 2003.

Published

2019-10-03

How to Cite

1.
Astros Fonseca IR, Combariza Bayona DA. Formaldehyde: A Literature Review on Biomarkers of Effect for Measuring Occupational Exposure. Rev. Fac. Nac. Salud Pública [Internet]. 2019 Oct. 3 [cited 2025 Jan. 30];37(3):74-85. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/333454

Issue

Section

Salud de los trabajadores