Overweight and obesity in adults: contributions of a geospatial analysis

Authors

  • Cindy Caterine Sánchez Monroy Facultad Nacional de Salud Pública.

DOI:

https://doi.org/10.17533/udea.rfnsp.e351984

Keywords:

adults, noncommunicable diseases, geospatial model, obesity, geographic information system, overweight

Abstract

Objective: To conduct a geospatial analysis of the prevalence of overweight and obesity based on the "National Survey of Nutritional Situation" of 2015.

Methodology: A cross-sectional spatial distribution analysis model is applied at the departmental level using data from the survey. Prevalences of overweight, obesity class I, II, and III according to body mass index and abdominal obesity in women and men according to waist circumference are calculated. Geographic information system tools, such as the Global Moran Index, the local spatial autocorrelation index (LISA), and G* Getis Ord, are used to determine patterns of high and low prevalence clusters.

Results: Local clusters shown in the maps demonstrate that their residuals are normally distributed in space. Randomness is observed in the spatial autocorrelation model. LISA high-high clusters are present in ten departments with these conditions (La Guajira, Magdalena, Atlántico, Sucre, Cesar, Norte de Santander, Córdoba, Antioquia, Chocó, and Cundinamarca). According to the body mass index, 38.5 per 100 inhabitants are overweight, 20.9 per 100 inhabitants have obesity, and according to waist circumference, 53.2 per 100 inhabitants have abdominal obesity.

Conclusions: The spatial distribution of overweight and obesity may be conditioned by sociodemographic variables examined in this study. The country faces the challenge of continuing to implement population health actions to reduce these conditions.

|Abstract
= 1106 veces | PDF (ESPAÑOL (ESPAÑA))
= 609 veces| | PDF INGLÉS (ESPAÑOL (ESPAÑA))
= 58 veces| | HTML (ESPAÑOL (ESPAÑA))
= 13 veces|

Downloads

Download data is not yet available.

References

Organización Mundial de la Salud. Obesidad y sobrepeso. Datos y cifras [internet]; 2020 [citado 2021 may. 15]. Disponible en: https://bit.ly/2GQdz3M

The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13-27. DOI: https://doi.org/10.1056/NEJMoa1614362

Organización Mundial de la Salud. Enfermedades no transmisibles. Datos y cifras [internet]; 2022 [citado 2021 feb. 6]. Disponible en: https://acortar.link/s3wScs

Asamblea Mundial de la Salud, 66. (‎2013)‎. Proyecto de plan de acción para la prevención y el control de las enfermedades no transmisibles 2013-2020 Informe de la Secretaría. [internet]; 2013 [citado 2021 abr. 23 ]. Disponible en: https://apps.who.int/iris/handle/10665/150913?locale-attribute=fr&

Herrán OF, Herrán-Fonseca C. Meal occasion, overweight, obesity and central obesity in children and adults: A cross-sectional study based on a nationally representative survey. Colombia, 2015. BMJ Open. 2022;12(9):1-13. DOI: https://doi.org/10.1136/bmjopen-2022-064832

Colombia, Ministerio de Salud y Protección Social. Encuesta Nacional de Situación Nutricional (ENSIN) [internet]; 2015 [citado 2021 abr. 23]. Disponible en: https://bit.ly/3UdpGsv

Instituto Colombiano de Bienestar Familiar; Instituto Nacional de Salud; Universidad Nacional de Colombia et al. Encuesta Nacional de la Situación Nutricional ENSIN 2015 [internet]; 2017 [citado 2021 jun. 7]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/libro-ensin-2015.pdf

Meisel JD, Ramírez AM, Esguerra V, et al. Using a system dynamics model to study the obesity transition by socioeconomic status in Colombia at the country, regional and department levels. BMJ Open. 2020;10(6):1-11. DOI: http://dx.doi.org/10.1136/bmjopen-2019-036534

Higuita-Gutiérrez LF, Martínez Quiroz WJ, Cardona-Arias JA. Prevalence of metabolic syndrome and its association with sociodemographic characteristics in participants of a public chronic disease control program in Medellin, Colombia, in 2018. Diabetes Metab Syndr Obes. 2020;13:1-9. DOI: http://dx.doi.org/10.2147/DMSO.S242826

Pagidipati NJ, Zheng Y, Green JB, et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am Heart J. 2020;219:47-57. DOI: http://dx.doi.org/10.1016/j.ahj.2019.09.016

Yanez N, Useche JN, Bayona H, et al. Analyses of mortality and prevalence of cerebrovascular disease in Colombia, South America (2014-2016): A cross-sectional and ecological study. Enferm Cerebrovasc J. 2020;1-9. DOI: http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104699

Gómez-Barroso D, Prieto-Flores M-E, et al. Análisis espacial de la mortalidad por enfermedades cardiovasculares en la ciudad de Madrid, España. Rev Esp Salud Publica. 2015;89(1):27-37. DOI: https://dx.doi.org/10.4321/S1135-57272015000100004

Pérez-Rodrigo C. Current mapping of obesity. Nutr Hosp. 2013;28(Supl. 5):21-31. DOI: http://dx.doi.org/10.3305/nh.2013.28.sup5.6915

Gurrutxaga M. Geografía de la salud: aplicaciones en la planificación territorial y urbana. Estud Geográficos. 2019;80(286):e007. DOI: https://doi.org/10.3989/estgeogr.201927.007

Kang-Tsung Chang. Introduction to Geographic Information Systems, 9.a ed. New York: McGraw-Hill [internet]; 2019 [citado 2021 may. 24]. Disponible en: https://acortar.link/0CCBzy

Maheswaran R, Craglia M, editors. GIS in public health practice. Boca Raton: CRC Press, Taylor & Francis Group [internet]; 2004 [citado 2021 may. 24]. Disponible en: https://acortar.link/AGkL1z

Chrisman N. Exploring Geographic Information Systems. 2.a ed. New York: Wiley [internet]; 2002 [citado 2021 may. 24]. Disponible en: https://worldcat.org/es/title/1000963018

Goodchild M, Haining RP. SIG y análisis espacial de datos: perspectivas convergentes. Investig Reg. [internet]. 2005 [citado 2021 may. 24]; (6):175-201. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=2124767

Goodchild MF. A spatial analytical perspective on geographical information systems. Int J Geogr Inf Sci. 2007;1(4):327-34. DOI: https://doi.org/10.1080/02693798708927820

Anselin L, Getis A. Spatial statistical analysis and geographic information systems. En: Fischer MM, Nijkamp P. editores, Geographic Information Systems, spatial modelling and policy evaluation. Berlin, Heidelberg: Springer; 1993. DOI: https://doi.org/10.1007/978-3-642-77500-0_3

Goodchild MF. Geographical information science. Int J Geogr Inf Sci. 1992;6(1):31-45. DOI: https://doi.org/10.1080/02693799208901893

Goodchild MF. GIS and modeling overview. En: Goodchild MF et al. GIS, spatial analysis, and modeling. New York: Esri Press [internet]; 2005 [citado 2021 may. 24]. pp. 1-17. Disponible https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.9550&rep=rep1&type=pdf

Maguire DJ. Moving towards a gis platform for spatial analysis and modeling. En: Michael F. Goodchild et al. GIS, spatial analysis, and modeling. New York: Esri Press. 2005. pp. 19-40.

Serna E., editor. Geoinformática aplicada con aprendizaje basado en problemas. Medellín: Ediorial Instituto Antioqueño de Investigación [internet]; 2017 [citado 2021 may. 24]. Disponible en: https://acortar.link/8rtGk

Seguinot Barbosa J. Capítulo X. Aplicación de las geo-tecnologías en la geografía de la salud. En: Santana Juarez MC, et al. Geografía de la salud sin fronteras, desde Iberoamérica. México: Universidad Autónoma del Estado de México [internet]; 2014 [citado 2021 may. 24]. pp. 97-108. Disponible en: https://acortar.link/3Sr6us

Wieczorek WF, Delmerico AM. Geographic information systems. Wiley Interdiscip Rev Comput Stat. 2009;1(2):167-86. DOI: https://doi.org/10.1002/wics.21

Penney TL, Rainham DGC, Dummer TJB, Kirk SFL. A spatial analysis of community level overweight and obesity. J Hum Nutr Diet. 2013;27(Supl. 2):65-74. DOI: https://doi.org/10.1111/jhn.12055

Hernández-Vásquez A, Bendezú-Quispe G, Díaz-Seijas D, et al. Análisis espacial del sobrepeso y la obesidad infantil en el Perú, 2014. Rev Peru Med Exp Salud Publica. 2016;33(3):489-97. DOI: http://dx.doi.org/10.17843/rpmesp.2016.333.2298

Hernández-Vásquez A, Bendezú-Quispe G, et al. Prevalencia de obesidad en menores de cinco años en Perú según sexo y región, 2015. Rev Esp Salud Pública [internet]. 2016 [citado 2021 nov. 3]; 90:1-10. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135-57272016000100414&lng=es&nrm=iso

World Health Organization (WHO). Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. WHO Technical Report Series 894. WHO: Geneva, Switzerland [internet]; 2000 [citado 2021 jul. 7]. Disponible en: https://apps.who.int/iris/handle/10665/42330

Ko GTC, Tang JSF. Waist circumference and BMI cut-off based on 10-year cardiovascular risk: Evidence for “central pre-obesity”. Obesity. 2007;15(11):2832-9. DOI: https://doi.org/10.1038/oby.2007.336

Moreno-Altamirano A, López-Moreno S, Corcho-Berdugo A. Principales medidas en epidemiología. Salud Publica Mex. [internet]. 2000 [citado 2021 oct. 24]; 42(4):337-48. Disponible en: https://www.scielosp.org/pdf/spm/v42n4/2882.pdf

Chimire R, Ferreira S, Green GT, et al. Green space and adult obesity in the United States. Ecol Econ. 2017;136:201-12. DOI: https://doi.org/10.1016/j.ecolecon.2017.02.002

Syabri I. Exploratory spatial data analysis for flow data: Exploring the error term of spatial interaction models. Jurnal Perencanaan Wilayah dan Kota [internet]. 2003 [citado 2021 abr. 15]; 14(2):49-68. Disponible en: https://journals.itb.ac.id/index.php/jpwk/article/view/4298/2333

Anselin L, Li X. Operational local join count statistics for cluster detection. J Geogr Syst. 2019;21:189-210. DOI: https://doi.org/10.1007/s10109-019-00299-x

Anselin L. Local Indicators of Spatial Association—LISA. Geogr Anal. 1995;abr. 27(2):93-115. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Asociación Médica Mundial (AMM). Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos. The World Medical Association [internet]; 1964 [citado 2022 nov. 10]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

Colombia, Ministerio de Salud. Resolución 8430, por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud (1993 octubre 4).

Muñoz FL, Pou SA, Díaz MP. An empirically derived “prudent” dietary pattern is associated with lower obesity occurrence: Modeling and mapping from a national nutrition survey. Nutr Res. 2023;feb. 109:26-34. DOI: https://doi.org/10.1016/j.nutres.2022.11.004

Hessel P, Rodríguez-Lesmes P, Torres D. Socio-economic inequalities in high blood pressure and additional risk factors for cardiovascular disease among older individuals in Colombia: Results from a nationally representative study. PLoS One. 2020;15(6):1-12. DOI: https://doi.org/10.1371/journal.pone.0234326

Colombia, Ministerio de Salud y Protección Social. Plan Decenal de Salud Pública PDSP, 2022-2031 [internet]; 2019 [citado 2023 ene. 30]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/documento-plan-decenal-salud-publica-2022-2031.pdf

Jimenez-Mora MA, Nieves-Barreto LD, Montaño-Rodríguez A, et al. Association of overweight, obesity and abdominal obesity with socioeconomic status and educational level in Colombia. Diabetes Metab Syndr Obes. 2020;13(1887-1898):1-12. DOI: https://doi.org/10.2147/DMSO.S244761

Colombia, Ministerio de Salud y Protección Social. Plan Decenal de Salud Pública PDSP, 2012-2021 [internet]; 2010 [citado 2021 jun. 1]. Disponible en: http://www.saludcapital.gov.co/DPYS/Documents/Plan Decenal de Salud Pública.pdf

Published

2023-05-23

How to Cite

1.
Sánchez Monroy CC. Overweight and obesity in adults: contributions of a geospatial analysis. Rev. Fac. Nac. Salud Pública [Internet]. 2023 May 23 [cited 2025 Jan. 22];41(2):e351984. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/351984

Issue

Section

Salud de los adultos

Categories