Assessment of long-term exposure to fine particulate matter (PM2.5) in MEDELLIN cohort study.
DOI:
https://doi.org/10.17533/udea.rfnsp.e357114Keywords:
air quality, air pollution, exposure to environmental risks, particulate matter, land use regression modelsAbstract
Objective: to evaluate the variability of pm2.5 during the period 2018-2019 in the urban area of Medellín at different geographic scales.
Methods: the land use regression (lur) model was applied, considering as dependent variable the mean annual concentration of pm2.5 of Medellin and nearby monitoring stations, buffers were defined with radii of 100, 150, 200, 300 and 500 m and center in the coordinates of the monitoring sites of the dependent variable, with each buffer a model was built.
Results: The selected models for the years 2018 and 2019 explain between 40 and 46% of the variability of pm2.5 with errors of the predicted concentrations of 1.64 µg/m3 and 2.18 µg/m3, respectively. The distribution of air pollutant was heterogeneous at neighborhood and block level, with the highest annual concentrations located towards the central strip of the city in the areas surrounding the Medellin River with marked areas towards the south and center. While for 2018, concentrations above 15 µg/m3 were estimated in 21% of the blocks, for 2019 100% of the estimates were above this concentration.
Conclusions: lur models were developed to assess pm2.5 exposure at different spatial scales in which land use and traffic explanatory variables predominated. Exposure levels below 25 µg/m3 were estimated at the different scales, a low variability that allowed the assignment of individual long-term exposures by place of residence in the participants of the medellín cohort project.
Downloads
References
1. Wolf MJ, Emerson JW, Esty DC, et al. Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy [internet]; 2022 [citado 2024 mar. 20]. Disponible en: epi.yale.edu
2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223-49. DOI: https://doi.org/10.1016/S0140-6736(20)30752-2
3. Sang S, Chu C, Zhang T, et al. The global burden of disease attributable to ambient fine particulate matter in 204 countries and territories, 1990-2019: A systematic analysis of the Global Burden of Disease Study 2019. Ecotoxicol Environ Saf. 2022;238:113588. DOI: https://doi.org/10.1016/j.ecoenv.2022.113588
4. Blanco E, Algranti E, Cifuentes LA, et al. Latin America and the Caribbean Code Against cancer 1st edition: Environment, occupation, and cancer. Cancer Epidemiol. 2023;86(Supl 1):102381. DOI: https://doi.org/10.1016/j.canep.2023.102381
5. Marín D, Orozco L, Narváez D, et al. Characterization of the external exposome and its contribution to the clinical respiratory and early biological effects in children: The PROMESA cohort study protocol. PLoS One. 2023; 18(1):e0278836. DOI: https://doi.org/10.1371/journal.pone.0278836
6. Rodríguez-Camargo LA, Sierra-Parada RJ, Blanco-Becerra LC. Análisis espacial de las concentraciones de PM2,5 en Bogotá según los valores de las guías de la calidad del aire de la Organización Mundial de la Salud para enfermedades cardiopulmonares, 2014-2015. Biomedica. 2020;40(1):137-52. DOI: https://doi.org/10.7705/biomedica.4719
7. Piñeros J, Marín A, Nieto E, et al. Contaminación atmosférica y sus efectos sobre la salud de los habitantes del Valle de Aburrá, 2008-2017. Análisis de la exposición de corto y largo plazo [internet]; 2023 [citado 2023 nov. 22]. Disponible en: https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Estudios-calidad-del-aire/contaminacion_atmosferica_efectos_salud.pdf
8. Palacio L, Durango G, Zapata C, at al. Characterization of airborne particulate matter and its toxic and proarrhythmic effects: A case study in Aburrá Valley, Colombia. Environ Pollut. 2023;336:122475. DOI: https://doi.org/10.1016/j.envpol.2023.122475
9. Rodriguez L, Belalcazar L, Castillo M, et al. Avoidable mortality due to long-term exposure to PM2.5 in Colombia 2014-2019. Environ Health. 2022;21(1):137. DOI: https://doi.org/10.1186/s12940-022-00947-8
10. Grisales H, Piñeros JG, Nieto E, et al. Local attributable burden disease to PM2.5 ambient air pollution in Medellín, Colombia, 2010-2016. F1000Res. 2021;10:428. DOI: https://doi.org/10.12688/f1000research.52025.2
11. Malagon J, Pinzón D, Parra E, et al. Assessment of personal exposure to particulate air pollution in different microenvironments and traveling by several modes of transportation in Bogotá, Colombia: Protocol for a mixed methods study (ITHACA). JMIR Res Protoc. 2022;11(1):e25690. DOI: https://doi.org/10.2196/25690
12. Gouveia N, Kephart JL, Dronova I, et al. Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Sci Total Environ. 2021;772:145035. DOI: https://doi.org/10.1016/j.scitotenv.2021.145035
13. Quinteros M, Blazquez C, Ayala S, et al. Development of spatio-temporal land use regression models for fine particulate matter and wood-burning tracers in Temuco, Chile. Environ Sci Technol [internet]. 2023 [citado 2024 ene. 20]; 57(48):19473-86. DOI: https://doi.org/10.1021/acs.est.3c00720
14. Son Y, Osornio ÁR, O’Neill MS, et al. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Sci Total Environ. 2018;639:40-48. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.144
15. Alcaldía de Medellín. Capítulo 1: Información general de ciudad. En Informe de gestión 2022. Medellín: Alcaldía de Medellín [internet]; 2023 [citado 2024 oct. 16]. Disponible en: https://www.medellin.gov.co/es/wp-content/uploads/2023/02/Capitulo-1.-Informacion-General-de-Ciudad-FINAL-2.pdf
16. Guerrero LA, Aristizábal EV. Estimación y análisis de umbrales críticos de lluvia para la ocurrencia de avenidas torrenciales en el Valle de Aburrá (Antioquia). Revista EIA. 2019;16(32):97-111. Disponible en: https://revistas.eia.edu.co/index.php/reveia/article/view/1281
17. Departamento Nacional de Planeación. Resultados Censo Nacional de Población y Vivienda 2018 [internet]; 2019 [citado 2024 ene. 20]. Disponible en: https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190709-CNPV-presentacion-medellin.pdf
18. Alcaldía de Medellín. (s. f.). Proyecciones (Población, Viviendas y Hogares). Centro Documental [internet]. [citado 2024 ene. 20]. Disponible en https://www.medellin.gov.co/es/centro-documental/proyecciones-poblacion-viviendas-y-hogares/
19. Zapata Celis, J. Modelo del crecimiento del parque automotor en la ciudad de Medellín, a partir de la implementación de políticas públicas para la gestión de la demanda basadas en la restricción por uso de placa y la chatarrización. Medellín: Universidad de Antioquia [internet]; 2023 [citado 2019 jul. 9]. Disponible en https://bibliotecadigital.udea.edu.co/dspace/bitstream/10495/33352/1/ZapataJose_2023_ModeloCrecimientoParqueAutomotor.pdf
20. Sistema de Alertas Tempranas del Valle de Aburrá.Geoportal SIATA [Plataforma en línea]. https://siata.gov.co/siata_nuevo/
21. Instituto de Hidrología, Meteorología y Estudios Ambientales. Reglas de validación y consistencia de las estadísticas de monitoreo y seguimiento de la calidad del aire [internet]; 2019 [citado 2024 ene. 20]. Disponible en: http://www.ideam.gov.co/documents/24189/102263008/M-GCI-EA-M019+MANUAL+DE+CRÍTICA+EMSCA.pdf/1406128d-4dd8-4845-a8ab-1273bc3e0513?version=1.0
22. Alcaldía de Medellín. Acuerdo 48 de 2014, por medio del cual se adopta la revisión y ajuste de largo plazo del Plan de Ordenamiento Territorial del Municipio de Medellín y se dictan otras disposiciones complementarias [internet]. 2014 [citado 2022 jun. 25]. Disponible en: https://www.medellin.gov.co/es/wp-content/uploads/2022/10/POT-Medellin.pdf.
23. Alcaldía de Medellín. Portal GeoMedellín [internet]. 2022 [citado 2022 jun. 25] https://www.medellin.gov.co/geomedellin
24. Eeftens M, Beelen R, De Hoogh K, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE Project. Environ Sci Technol. 2012; 46(20). DOI: https://doi.org/10.1021/es301948k
25. Londoño L, Cañón J. Metodología para la aplicación de modelos de regresión de usos del suelo en la estimación local de la concentración mensual de PM10 en Medellín – Colombia. Rev. Politec [internet]. 2015 [citado 2023 nov. 22]; 11(21):29-40. Disponible en: https://revistas.elpoli.edu.co/index.php/pol/article/view/617
26. Bertazzon S, Johnson M, et al. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat Spatiotemporal Epidemiol. 2015;14-15:9-21 DOI: http://dx.doi.org/10.1016/j.sste.2015.06.002
27. Colombia, Ministerio de Ambiente y Desarrollo Sostenible. Resolución 2254, por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones [internet]. 2017 nov. 1 [citado 2024 oct. 5]. Disponible en: https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdf
28. Organización Mundial de la Salud. Directrices mundiales de la OMS sobre la calidad del aire. Materia particulada (MP2,5 y MP10), ozono, dióxido de nitrógeno, dióxido de azufre y monóxido de carbono [internet]. 2021 [citado 2024 oct. 05]. Disponible en: https://iris.who.int/bitstream/handle/10665/346062/9789240035461-spa.pdf
29. Colombia, Ministerio de Salud. Resolución 8430, por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud [internet]. 1993, oct. 4. [citado 2024 oct. 10]. Disponible en: Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF
30. Organización Panamericana de la Salud y Consejo de Organizaciones Internacionales de las Ciencias Médica. Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos (4.a ed.). Ginebra: Consejo de Organizaciones Internacionales de las Ciencias Medicas (CIOMS) [internet]. 2016 [citado 2024 oct. 10]. Disponible en: https://cioms.ch/wp-content/uploads/2017/12/CIOMS-EthicalGuideline_SP_INTERIOR-FINAL.pdf
31. Piñeros JG, Grisales HJ, Nieto ES, et al. Contaminación atmosférica y sus efectos sobre la salud de los habitantes del Valle de Aburrá: 2008-2015. Medellín (Colombia): Área Metropolitana del Valle de Aburrá [internet]; 2018 [citado 2024 oct. 10]. Disponible en: https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Salud-publica/contaminacion_atmosferica_efectos_salud.pdf
32. Rodríguez LA, Rojas NY, Blanco LC, et al. Short-term effects of air pollution on respiratory and circulatory morbidity in Colombia 2011-2014: A multi-city, time-series analysis. Int J Environ Res Public Health. 2018;15(8):1610. DOI: http://dx.doi.org/10.3390/ijerph15081610
33. Rodriguez LA, Moreno FE, Valbuena AM, et al. Childhood leukemia in small geographical areas and proximity to industrial sources of air pollutants in three Colombian cities. Int J Environ Res Public Health. 2020; 17(21):7925. DOI: http://dx.doi.org/10.3390/ijerph17217925
34. Rodriguez LA, Rojas Y, Grisales S, et al. Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environ Sci Pollut Res Int. 2024; 31(2):3207-21. DOI: http://dx.doi.org/10.1007/s11356-023-31306-w
35. De Hoogh K, Korek M, Vienneau D, et al. Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies. Environ Int. 2014;73:382-92. DOI: http://dx.doi.org/10.1016/j.envint.2014.08.011
36. Shi Y, Lau KK, Ng E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ Res. 2017;157:17-29. DOI: http://dx.doi.org/10.1016/j.envres.2017.05.007
37. Área Metropolitana del Valle de Aburrá, Universidad Pontificia Bolivariana. Actualización inventario de emisiones atmosféricas del Valle de Aburrá - año 2018. Medellín: Área Metropolitana del Valle de Aburrá [internet]; 2020 [citado 2024 feb. 10]. Disponible en: https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Inventario-de-emisiones/Inventario-de-Emisiones-2018.pdf
38. Alvarez CI, Teodoro AC, et al. Assessment of remote sensing data to Model PM10 estimation in cities with a low number of air quality stations: A case of study in Quito, Ecuador. Environments. 2019; 6(7):85. DOI: https://doi.org/10.3390/environments6070085
39. Ma X, Zou B, Deng J, et al. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. Environ Int. 2024;183:108430. DOI: https://doi.org/10.1016/j.envint.2024.108430
40. Brunekreef B, Strak M, Chen J, et al. Mortality and morbidity effects of long-term exposure to low-level PM2.5, BC, NO2, and O3: An analysis of European cohorts in the ELAPSE Project. Res Rep Health Eff Inst. 2021;2021(208):1-127.
41. Patton AP, Zamore W, Naumova EN, et al. Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area. Environ Sci Technol. 2015;49(10):6051-60. DOI: https://doi.org/10.1021/es5061676
Downloads
Published
How to Cite
License
Copyright (c) 2025 Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The contents of the articles are the responsibility of the authors
The editorial committee has editorial independence from the National School of Public Health "Héctor Abad Gómez" of the University of Antioquia.
The editorial committee is not responsible for aspects related to copying, plagiarism or fraud that may appear in the articles published in it.
When you are going to reproduce and disclose photographs or personal data in printed or digital format, informed consent is required. Therefore, this requirement is required of the author at the time of receipt of the manuscript.
Authors are responsible for obtaining the necessary permissions to reproduce any material protected by reproduction rights.
The authors preserve the moral rights and assign the economic rights that will correspond to the University of Antioquia, to publish it, distribute electronic copies, include them in indexing services, directories or national and international databases in Open Access, under the Creative Commons Attribution license -Not Commercial-Share Equal 4.0 International Commercial (CC BY-NC-SA) which allows others to distribute, remix, retouch, and create from the work in a non-commercial way, as long as the respective credit and license are granted. new creations under the same conditions.
The authors will sign the declaration of transfer of economic rights to the University of Antioquia, after the acceptance of the manuscript.
The editorial committee reserves the right to reject the articles whose authors do not offer satisfactory explanations about the contribution of each author, to meet the criteria of authorship in the submission letter. All authors must meet the four criteria of authorship according to ICMJE: "a) .- That there is a substantial contribution to the conception or design of the article or to the acquisition, analysis or interpretation of the data. b) That they have participated in the design of the research work or in the critical review of its intellectual content. c) .- That has been intervened in the approval of the final version that will be published.d). That they have the capacity to respond to all aspects of the article in order to ensure that issues related to the accuracy or integrity of any part of the work are adequately investigated and resolved. "