Health risk perception by exposure to pollutant mixtures: the case of agricultural valleys in Mexicali and San Quintín, Baja California, Mexico

Authors

  • Evarista Arellano G. UABC
  • Lourdes Camarena O. UABC
  • Christine Von-Glascoe COLEF
  • Luis W. Daesslé UABC

DOI:

https://doi.org/10.17533/udea.rfnsp.912

Keywords:

health effects, environmental contaminants, risk perception, toxicology

Abstract

Objective: To examine risk perception based on principles of intuitive toxicology and characteristics of exposure to mixtures of contaminants in residents of two sites in Baja California, Mexico: the Colorado River estuary at the intersection of Hardy and Colorado rivers and San Quintin Valley. Methodology: A questionnaire was applied to 166 participants and it was analyzed four criteria of exposure to contaminants: types, grades, levels and intensity. Through intuitive toxicology, three elements of perception risk were classified: occupational exposure, environmental exposures and health effects. It was applied a cluster analysis (CA) for exploratory classification and principal component analysis (PCA) to explain the relationships between variables. Results and discussion: vulnerable participants to health effects from exposure to mixtures of pollutants and understanding of risk are related to exposure characteristics, as only they perceive acute complaints and they exclude chronic degenerative, which is explained by the concept of intuitive toxicology. The perception of risk is measured by schooling and wage income, agricultural workers do not detect effects of such chronic health from exposure to mixtures of pollutants
|Abstract
= 203 veces | PDF (ESPAÑOL (ESPAÑA))
= 59 veces|

Downloads

Download data is not yet available.

Author Biographies

Evarista Arellano G., UABC

Full-time Professor-Researcher, attached to the Master's Degree in Ecosystem Management of the Faculty of Sciences of the Autonomous University of Baja California

Lourdes Camarena O., UABC

Full-time Professor-Researcher at the Faculty of Administrative and Social Sciences

Christine Von-Glascoe, COLEF

Researcher at the College of the Northern Border

Luis W. Daesslé, UABC

Researcher at the Institute of Oceanological Research at the Autonomous University of Baja California

References

(1). Moreno JA, López MG. Desarrollo agrícola y uso de agroquímicos en el valle de Mexicali. Estudios Fronterizos UABC México 2005; 6: 119-153. DOI: https://doi.org/10.21670/ref.2005.12.a05

(2). Moreno JA, Niño L. El nivel de bienestar de los trabajadores agrícolas de San Quintín y Valle de Mexicali, Baja California. Ciencias Marinas 2004; 301: 133-143.

(3) Cardona OD. Manejo ambiental y prevención de desastres: dos temas asociados. En: Fernández MA, editor. Ciudades en Riesgo, Degradación Ambiental, Riesgos Urbanos y Desastres. Red de Estudios Sociales en Prevención de Desastres en América Latina 1996: 57-75.

(4). Braud A. Inventario de Plaguicidas Agrícolas Usados en la Fron-tera México-Estados Unidos. Organización Panamericana de la Salud Informe Final de la Oficina de Campo México-Estados Unidos 2005.

(5). Portugal E, Izquierdo G, Truesdell A, Álvarez J. The geoche-mistry and isotope hydrology of the Southern Mexicali Valley in the area of the Cerro Prieto, Baja California Mexico geothermal field. Journal of Hydrology 2005; 3133: 4132-148.

(6). Quintanilla A, Suárez F. Cerro Prieto and its relation to the Gulf of California spreading centers. Ciencias Marinas 1996; 221: 91-110. DOI: https://doi.org/10.7773/cm.v22i1.832

(7). Daesslé LW, Lugo KC, Tobschall HJ, Melo M, Gutiérez EA, García LG. Accumulation of As, Pb; and Cu associated with the recent sedimentary processes in the Colorado Delta, South of the Unites States-Mexico Boundary. 2009, Archives of Environmen-tal Contamination and Toxicology [En prensa]. DOI: https://doi.org/10.1007/s00244-008-9218-2

(8). García J, King KA, Velasco AL, Shumilin E, Mora MA, Glen E P. Selenium, selected inorganic elements, and organochlorine pes-ticides in bottom material and biota fron Colorado River deltam. Journal of Arid Environments 2001; 49: 65-89. DOI: https://doi.org/10.1006/jare.2001.0836

(9). García J, Sapozhnikova YV, Schlenk D, Mason AZ, Hinojosa O, Rivera JJ, et al. Concentration of contaminants in breeding bird eggs from the Colorado-River-Delta, México. Environmental Toxicology and Chemistry 2006; 25: 1640-1647. DOI: https://doi.org/10.1897/05-185R.1

(10). Garduño E, García E, Morán P. Mixtecos en Baja California: El caso de San Quintín. Mexicali, B. C., México. Universidad Autó-noma de Baja California; 1989. 293 págs.

(11). Arellano C. Informe de Experiencias de Trabajo Docente en la Colonia Lázaro Cárdenas, San Quintín, B. C. Ensenada: Escuela Normal Estatal; 1975.

(12). Aguirre A, Buddemeier R, Camacho V, Carriquiry JD, Ibarra SE, Massey B, et al. Sustainability of Coastal Resource Use in San Quintin, Mexico. a m b i o 2001; 30:142-150. DOI: https://doi.org/10.1639/0044-7447(2001)030[0142:SOCRUI]2.0.CO;2

(13). Comisión Nacional del Agua. Determinación de la disponibilidad de agua en el Acuífero Colonia Vicente Guerrero, Estado de Baja California. Gerencia de Aguas Subterráneas; 2002.

(14). Melo M, Daessle LW, García J. Efectos del represamiento del Río Colorado en la sedimentación y abundancia de Hg en el Río Hardy-Colorado, Baja California, México. Pachuca; 2007.

(15). Cohen M. Entendidendo los flujos de agua en el Delta del Rio Colorado: Recomendaciones para la instalación de estaciones hidrométricas y mejorar la recolección y reporte de datos hidro-lógicos. Informe Técnico. Pacific Institue, Research for People and the Planet; 2005.

(16). Zúñiga LW. Ordenamiento ambiental para un plan de manejo integral de la cuenca del Arroyo Santo Domingo, Baja California, México. [Tesis de Maestría]. México: u a b c; 1995.

(17). Berube DM. Intuitive Toxicology: The Public Perception of Nanoscience. En: Allhoff y P L. Nanotechnology and Society. Springer Netherlands 2008: 91-108. DOI: https://doi.org/10.1007/978-1-4020-6209-4_5

(18). Sjöberg LA. Discussion of the Limitations of the Psychometric and Cultural Theory Approaches to Risk Perception. Radiation Protection Dosimetry 1996, 68:219-225. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a031868

(19). Finucane ML. Psychosocial and cultural factors affecting the perceived risk of genetically modified food: an overview of the literature. 2005, Social Science & Medicine; 60: 1603-1612. DOI: https://doi.org/10.1016/j.socscimed.2004.08.007

(20). Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCau KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccinatio. Health Psychology 2007; 26: 136-145. DOI: https://doi.org/10.1037/0278-6133.26.2.136

(21). Berube DM. NanoHype: the truth behind the nanotechnology buzz. Prometheus Books 2006: 302 págs.

(22). Marris C, Langford IH, O’Rio T. A Quantitative Test of the Cul-tural Theory of Risk Perceptions: Comparison with the Psycho-metric Paradigm Risk Analysis 2009; 18: 635-647. DOI: https://doi.org/10.1023/B:RIAN.0000005937.60969.32

(23). Sunstein CR.On the divergent american reactions to terrorism and climate change. Columbia Law Review 2007; 107: 503-557. DOI: https://doi.org/10.2139/ssrn.901217

(24). Mertz CK, Slovic P, Purchase IF.Judgments of chemical risks: comparisons among senior managers, toxicologists, and the pu-blic. Risk Analaysis 1998; 18: 391-404. DOI: https://doi.org/10.1111/j.1539-6924.1998.tb00353.x

(25). Malmfors T, Slovic P, Neil N.Intuitive toxicology: expert and lay judgments of chemical risks. Toxicology and Patholology 1994; 22: 198-201. DOI: https://doi.org/10.1177/019262339402200214

Published

2010-02-15

How to Cite

1.
Arellano G. E, Camarena O. L, Von-Glascoe C, Daesslé LW. Health risk perception by exposure to pollutant mixtures: the case of agricultural valleys in Mexicali and San Quintín, Baja California, Mexico. Rev. Fac. Nac. Salud Pública [Internet]. 2010 Feb. 15 [cited 2025 Mar. 4];27(3):1-11. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/912

Issue

Section

Research