COVID-19: perspectivas terapéuticas en IL-17/Th17

Palabras clave: Betacoronavirus, COVID-19, Inflamación, Interleucina-17, Terapia

Resumen

Las células T helper-17 (Th17) y la interleuquina (IL) IL-17 desempeñan funciones biológicas relacionadas con la protección contra infecciones por bacterias extracelulares y hongos. En algunas enfermedades inflamatorias y autoinmunes hay una secreción persistente y estas participan en su patogénesis. Recientemente, se ha postulado la participación de las respuestas IL-17/Th17 en la patogénesis de la enfermedad por coronavirus 2019 (COVID-19). El objetivo de esta revisión es resumir la evidencia del papel de la IL-17/Th17 en la inmunopatogénesis del COVID-19, como sustento de la posible utilización de los inhibidores de IL-17 en el manejo terapéutico de esta infección.

|Resumen
= 77 veces | PDF
= 40 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Franky Úsuga-Úsuga, Universidad de Antioquia

Microbiólogo y Bioanalista, Centro de Investigaciones Dermatológicas CIDERM, Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

Luis F. García, Universidad de Antioquia

Profesor emérito, Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia.

Margarita Velásquez-Lopera, Universidad de Antioquia

Docente, Directora Centro de Investigaciones Dermatológicas CIDERM, Jefe Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

 

Citas

(1) Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):372. DOI 10.3390/v12040372.

(2) COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University; 2020 [citado 2021 enero 12]. Disponible en: https://coronavirus.jhu.edu/map.html

(3) García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441. DOI 10.3389 / fimmu.2020.01441.

(4) Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11:1708. DOI 10.3389 / fimmu.2020.01708.

(5) Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405-7. DOI 10.1016 / j.healun.2020.03.012.

(6) Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128. DOI 10.1056/NEJMoa2015432.

(7) Orlov M, Wander PA-O, Morrell ED, Mikacenic C, Wurfel MM. A Case for Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol. 2020, 205 (4) 892-98. DOI 10.4049/jimmunol.2000554.

(8) Wiche Salinas TR, Zheng B, Routy J-P, Ancuta P. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection. Respirology. 2020; 25: 797–99. DOI 10.1111/resp.13875.

(9) Mendoza VMM. Interleukin-17: A potential therapeutic target in COVID-19. J Infect. 2020;81(2):e136-e138. DOI 10.1016/j.jinf.2020.05.072.

(10) Bulat V, Situm M, Azdajic MD, Likic R. Potential role of IL-17 blocking agents in the treatment of severe COVID-19? Br J Clin Pharmacol. 2020. DOI 10.1111/bcp.14437.

(11) Raucci F, Mansour AA, Casillo GM, Saviano A, Caso F, Scarpa R, et al. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev. 2020;19(7):102572. DOI 10.1016/j.autrev.2020.102572.

(12) Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibiting IL-17? Nat Rev Immunol. 2020;20(6):345-46. DOI 10.1038/s41577-020-0328-z.

(13) Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071. DOI 10.1126/sciimmunol.abd2071.

(14) Shibabaw T. Inflammatory Cytokine: IL-17A Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J Inflamm Res. 2020;13:673-680. DOI 10.2147/JIR.S278335.

(15) Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol. 2007;19(6):377-82. DOI 10.1016/j.smim.2007.10.009.

(16) Chen K, Kolls JK. Interluekin-17A (IL17A). Gene. 2017;614:8-14. DOI 10.1016/j.gene.2017.01.016.

(17) Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87-113. DOI 10.1111/j.1600-065X.2008.00628.x.

(18) Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol. 2007;19(6):409-17. DOI 10.1016/j.smim.2007.10.011.

(19) Bedoya SK, Lam B, Lau K, Larkin J, 3rd. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789. DOI 10.1155/2013/986789.

(20) Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8(9):967-74. DOI 10.1038/ni1488.

(21) Capone A, Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol . 2020;11:348. DOI 10.3389 / fimmu.2020.00348.

(22) Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479-89. DOI 10.1038/nri2800.

(23) Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485-17. DOI 10.1146/annurev.immunol.021908.132710.

(24) Maddur MS, Miossec P Fau - Kaveri SV, Kaveri Sv Fau - Bayry J, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181(1):8-18. DOI 10.1016/j.ajpath.2012.03.044.

(25) Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70. DOI 10.1016/j.jmii.2020.03.005.

(26) Ruiz de Morales JMG, Puig L, Daudén E, Cañete JD, Pablos JL, Martín AO, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev. 2020;19(1):102429. DOI 10.1016/j.autrev.2019.102429.

(27) Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129(3):311-21. DOI 10.1111/j.1365-2567.2009.03240.x.

(28) Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol. 2018;10(4):a028522. DOI 10.1101/cshperspect.a028522.

(29) Nirula A, Nilsen J, Klekotka P, Kricorian G, Erondu N, Towne JE, et al. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases. Rheumatology. 2016;55(suppl_2):ii43-ii55. DOI 10.1093/rheumatology/kew346.

(30) Holloway TL, Rani M, Cap AP, Stewart RM, Schwacha MG. The association between the Th-17 immune response and pulmonary complications in a trauma ICU population. Cytokine. 2015;76(2):328-33. DOI 10.1016/j.cyto.2015.09.003.

(31) Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Crit Care Med. 2016;44(3):496-02. DOI 10.1097/CCM.0000000000001409.

(32) Piaserico S, Meneguzzo A, Messina F. REPLY TO: Interleukin-17: a potential therapeutic target in COVID-19. J Infect. 2020;81(3):e37-e38. DOI 10.1016/j.jinf.2020.06.063.

(33) Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L6-L16. DOI 10.1152/ajplung.00344.2017.

(34) Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Muñoz-Hernández O, Giacoman-Martínez A, et al. IL-17A and TNF-α as potential biomarkers for acute respiratory distress syndrome and mortality in patients with obesity and COVID-19. Medical Hypotheses. 2020;144:109935. DOI 10.1016/j.mehy.2020.109935.

(35) Sabioni L, De Lorenzo A, Lamas C, Muccillo F, Castro-Faria-Neto HC, Estato V, et al. Systemic microvascular ndothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis. Microvasc Res. 2020;134:104119. DOI 10.1016/j.mvr.2020.104119.

(36) Cacciapuoti S, De Rosa A, Gelzo M, Megna M, Raia M, Pinchera B, et al. Immunocytometric analysis of COVID patients: A contribution to personalized therapy? Life Sci. 2020;261:118355. DOI 10.1016/j.lfs.2020.118355.

(37) Liu Y, Zhang C, Huang F, Yang Y, Wang F, Yuan J, et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev. 2020;7(6):1003-11. DOI 10.1093/nsr/nwaa037.

(38) Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-06. DOI 10.1016/S0140-6736(20)30183-5.

(39) Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13):e139834. DOI 10.1172/jci.insight.139834.

(40) Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China. J Infect Dis. 2020;222(5):746-54. DOI 10.1093/infdis/jiaa363.

(41) Qi D, Yan X, Tang X, Peng J, Yu Q, Feng L, et al. Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: a retrospective, descriptive, multiple-center study. medRxiv. 2020:2020.03.01.20029397. DOI 10.1101/2020.03.01.20029397.

(42) Zhang h, wang x, fu z, luo m, zhang z, zhang k, et al. Potential Factors for Prediction of Disease Severity of COVID-19 Patients. medRxiv. 2020:2020.03.20.20039818. DOI 10.1101/2020.03.20.20039818.

(43) Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463-9. DOI 10.1038/s41586-020-2588-y.

(44) Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2020;1-11. DOI 10.1002/jcp.30047.

(45) De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):3434. DOI 10.1038/s41467-020-17292-4.

(46) Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-22. DOI 10.1016/S2213-2600(20)30076-X.

(47) Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, Jiménez P, Garrido F, Anderson P, et al. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Front Immunol. 2020;11:596553. DOI 10.3389/fimmu.2020.596553.

(48) Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020;81(2):e16-e25. DOI 10.1016/j.jinf.2020.04.021.

(49) Wang X, Fang X, Cai Z, Wu X, Gao X, Min J, et al. Comorbid Chronic Diseases and Acute Organ Injuries Are Strongly Correlated with Disease Severity and Mortality among COVID-19 Patients: A Systemic Review and Meta-Analysis. Research (Wash D C). 2020;2020:2402961. DOI 10.34133/2020/2402961.

(50) Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, Seow J, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med. 2020;(11):1701-7. DOI 10.1038/s41591-020-1054-6.

(51) Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). medRxiv. 2020.07.04.20142752. DOI 10.1101/2020.07.04.2014275.

(52) Jean S-S, Lee P-I, Hsueh P-R. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43. DOI 10.1016/j.jmii.2020.03.034.

(53) Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol. 2020;90:107225. DOI 10.1016/j.intimp.2020.107225.

(54) Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Cancer and SARS-CoV-2 Infection: Diagnostic and Therapeutic Challenges. Cancers. 2020;12(6):1581. DOI 10.3390/cancers12061581.

(55) Cafarotti S. Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Patients With Lung Cancer: The Potential Role of Interleukin-17 Target Therapy. J Thorac Oncol. 2020;15(7):e101-e3. DOI 10.1016/j.jtho.2020.04.015.

(56) Xu Q, Chen L, Li X, Zheng J. If skin is a potential host of SARS-CoV-2, IL-17 antibody could reduce the risk of COVID-19. J Am Acad Dermatol. 2020;S0190-9622(20)32905-4. DOI 10.1016/j.jaad.2020.10.084.

(57) Frieder J, Kivelevitch D, Haugh I, Watson I, Menter A. Anti-IL-23 and Anti-IL-17 Biologic Agents for the Treatment of Immune-Mediated Inflammatory Conditions. Clin Pharmacol Ther. 2018;103(1):88-101. DOI 10.1002/cpt.893.

(58) Ly K, Smith MP, Thibodeaux Q, Reddy V, Liao W, Bhutani T. Anti IL-17 in psoriasis. Expert Rev Clin Immunol. 2019;15(11):1185-94. DOI 10.1080/1744666X.2020.1679625.

(59) O’Rielly DD, Rahman P. A review of ixekizumab in the treatment of psoriatic arthritis. Expert Rev Clin Immunol. 2018;14(12):993-1002. DOI 10.1080/1744666X.2018.1540931.

(60) Jomah S, Asdaq SMB, Al-Yamani MJ. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J Infect Public Health. 2020;13(9):1187-95. DOI 10.1016/j.jiph.2020.07.013.

(61) Liu P, Huang Z, Yin M, Liu C, Chen X, Pan P, et al. Safety and Efficacy of Ixekizumab and Antiviral Treatment for Patients with COVID-19: A structured summary of a study protocol for a Pilot Randomized Controlled Trial. Trials. 2020;21(1):999. DOI 10.1186/s13063-020-04925-8.

Publicado
2021-03-31
Cómo citar
1.
Úsuga-ÚsugaF, GarcíaLF, Velásquez-LoperaMM. COVID-19: perspectivas terapéuticas en IL-17/Th17. Iatreia [Internet]. 31 de marzo de 2021 [citado 17 de mayo de 2021];1(1). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/343865
Sección
Artículos de revisión