Clinical and epidemiological round: journal club
DOI:
https://doi.org/10.17533/udea.%20iatreia.v31n4a10Keywords:
breast neoplasms, chronic kidney disease, contraception, education, fluid therapy, lactic acidosis, metformin, myopia, postoperative complications, risk assessment, survival rateAbstract
In this new edition of the Clinical and Epidemiologic Round, the reader will find four articles that we have considered of special relevance for current clinical practice. In a pragmatic, multicenter and randomized controlled trial, Myles et al compared a restrictive versus liberal intravenous-fluid strategy for patients undergoing major abdominal surgery evaluating disability-free survival after one year. Furthermore, Mørch et al, present a Danish prospective cohort evaluating the association between the use of oral contraceptives and risk of invasive breast cancer. Additionally, in a community-based cohort study, Lazarus et al aimed to quantify the association between metformin use and hospitalization with acidosis across the range of estimated glomerular filtration rate. At last, using a mendelian randomization study, Mountjoy et al. aimed to determine whether more years spent in education is a causal risk factor for myopia or, conversely, whether myopia is a causal risk factor for more years in education.
Downloads
References
(1.) Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015 Apr 27;385 Suppl 2:S11. DOI 10.1016/S0140-6736(15)60806-6.
(2.) Lawrence VA, Hazuda HP, Cornell JE, Pederson T, Bradshaw PT, Mulrow CD, et al. Functional independence after major abdominal surgery in the elderly. J Am Coll Surg. 2004 Nov;199(5):762-72.
(3.) Jakobson T, Karjagin J, Vipp L, Padar M, Parik AH, Starkopf L, et al. Postoperative complications and mortality after major gastrointestinal surgery. Medicina (Kaunas). 2014;50(2):111-7. DOI 10.1016/j.medici.2014.06.002.
(4.) Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009 Oct;361(14):1368-75. DOI 10.1056/NEJMsa0903048.
(5.) Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017 Mar;152(3):292-8. DOI 10.1001/jamasurg.2016.4952.
(6.) Arieff AI. Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest. 1999 May;115(5):1371-7.
(7.) Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010 Feb;6(2):107-15. DOI 10.1038/nrneph.2009.213.
(8.) Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002 Oct;89(4):622-32.
(9.) Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS, et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand. 2016 Mar;60(3):289-334. DOI 10.1111/aas.12651.
(10.) Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(®)) Society recommendations. World J Surg. 2013 Feb;37(2):259-84. DOI 10.1007/s00268-012-1772-0.
(11.) Brandstrup B, Svendsen PE, Rasmussen M, Belhage B, Rodt SÅ, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth. 2012 Aug;109(2):191-9. DOI 10.1093/bja/aes163.
(12.) Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003 Nov;238(5):641-8.
(13.) Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg. 2009 Apr;96(4):331-41. DOI 10.1002/bjs.6552.
(14.) Yamada T, Vacas S, Gricourt Y, Cannesson M. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques. Front Med (Lausanne). 2018 May;5:144. DOI 10.3389/fmed.2018.00144.
(15.) Mørch LS, Skovlund CW, Hannaford PC, Iversen L, Fielding S, Lidegaard Ø. Contemporary Hormonal Contraception and the Risk of Breast Cancer. N Engl J Med. 2017 Dec;377(23):2228-39. DOI 10.1056/NEJMoa1700732.
(16.) Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: further results. Contraception. 1996 Sep;54(3 Suppl):1S-106S.
(17.) Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet. 1996 Jun;347(9017):1713-27.
(18.) Thygesen LC, Daasnes C, Thaulow I, Brønnum-Hansen H. Introduction to Danish (nationwide) registers on health and social issues: structure, access, legislation, and archiving. Scand J Public Health. 2011 Jul;39(7 Suppl):12-6.
(19.) Pardo Ramos C, Cendales Duarte R. Incidencia, mortalidad y prevalencia de cáncer en Colombia, 2007-2011 [Internet]. Bogotá: Instituto Nacional de Cancerología; 2015. Disponible en: http://www.cancer.gov.co/files/libros/archivos/incidencia1.pdf
(20.) American Diabetes Association. 8. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018 Jan;41(Suppl 1):S73-S85. DOI 10.2337/dc18-S008.
(21.) Kajbaf F, Lalau JD. The criteria for metformin-associated lactic acidosis: the quality of reporting in a large pharmacovigilance database. Diabet Med. 2013 Mar;30(3):345-8. DOI 10.1111/dme.12017.
(22.) Alivanis P, Giannikouris I, Paliuras C, Arvanitis A, Volanaki M, Zervos A. Metformin-associated lactic acidosis treated with continuous renal replacement therapy. Clin Ther. 2006 Mar;28(3):396-400.
(23.) Chang CT, Chen YC, Fang JT, Huang CC. Metforminassociated lactic acidosis: case reports and literature review. J Nephrol. 2002 Jul-Aug;15(4):398-402.
(24.) Lalau JD, Race JM. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of ‘metformin-associated lactic acidosis’. Diabetes, Obesity and Metabolism. 2001;3(3):195-201.
(25.) Eppenga WL, Lalmohamed A, Geerts AF, Derijks HJ, Wensing M, Egberts A, et al. Risk of lactic acidosis or elevated lactate concentrations in metformin users with renal impairment: a population-based cohort study. Diabetes Care. 2014 Aug;37(8):2218-24. DOI 10.2337/dc13-3023.
(26.) Hung SC, Chang YK, Liu JS, Kuo KL, Chen YH, Hsu CC, et al. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015 Aug;3(8):605-14. DOI 10.1016/S2213-8587(15)00123-0.
(27.) Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014 Dec;312(24):2668-75. DOI 10.1001/jama.2014.15298.
(28.) Flory JH, Hennessy S. Metformin use reduction in mild to moderate renal impairment: possible inappropriate curbing of use based on food and drug administration contraindications. JAMA Intern Med. 2015 Mar;175(3):458-9. DOI 10.1001/jamainternmed.2014.6936.
(29.) Good CB, Pogach LM. Should Metformin Be First-line Therapy for Patients With Type 2 Diabetes and Chronic Kidney Disease?: Informed Patients Should Decide. JAMA Intern Med. 2018 Jul;178(7):911-912. DOI 10.1001/jamainternmed.2018.0301.
(30.) US Food and Drug Administration. FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function [Internet]. [cited Jun 29 de 2018]. Available from: www.fda.gov/downloads/Drugs/DrugSafety/UCM494140.pdf
(31.) Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017 Nov;318(19):1925-6. DOI 10.1001/jama.2017.17219.
(32.) Jonas JB, Xu L, Wang YX, Bi HS, Wu JF, Jiang WJ, et al. Education-Related Parameters in High Myopia: Adults versus School Children. PLoS One. 2016 May;11(5):e0154554. DOI 10.1371/journal.pone.0154554.
(33.) Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K, et al. Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology. 2014 Oct;121(10):2047-52. DOI 10.1016/j.ophtha.2014.04.017.
(34.) Jones-Jordan LA, Sinnott LT, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Invest Ophthalmol Vis Sci. 2012 Oct;53(11):7169-75. DOI 10.1167/iovs.11-8336.
(35.) Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. The epidemics of myopia: Aetiology and prevention. Prog Retin Eye Res. 2018 Jan;62:134-149. DOI 10.1016/j.preteyeres.2017.09.004.
(36.) Zhou Z, Chen T, Wang M, Jin L, Zhao Y, Chen S, et al. Pilot study of a novel classroom designed to prevent myopia by increasing children’s exposure to outdoor light. PLoS One. 2017 Jul;12(7):e0181772. DOI 10.1371/journal.pone.0181772.
(37.) French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013 Sep;114:58-68. DOI 10.1016/j.exer.2013.04.018.
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Iatreia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Papers published in the journal are available for use under the Creative Commons license, specifically Attribution-NonCommercial-ShareAlike 4.0 International.
The papers must be unpublished and sent exclusively to the Journal Iatreia; the author uploading the contribution is required to submit two fully completed formats: article submission and authorship responsibility.