Adverse effects of prenatal exposure to airborne particulate matter on the fetus and newborn
DOI:
https://doi.org/10.17533/10.17533/udea.iatreia.148Keywords:
Air Pollution, Inflammation, Oxidative Stress, Particulate Matter, Pregnancy ComplicationsAbstract
Particulate matter (PM) is a group of solid and liquid elements produced by different anthropogenic and natural activities, which are emitted directly into the air. It has different physicochemical and thermodynamic properties and according to its aerodynamic diameter, it can be classified as PM10 (<10 μm), PM2.5 <2.5 μm) and PM0.1 (<0.1 μm). It can be inhaled and reach other organs from the lungs, causing respiratory, cardiovascular and neurological diseases, among others. Considering that the foetus is susceptible to air pollutants such as PM through gestational exposure, and that early life disturbances are crucial for development, PM can cause various disorders or complications including premature birth, low birth weight and neuropsychological damage, among others. This review summarizes the epidemiological evidence that demonstrates the relationship between maternal exposure to PM and adverse outcomes in foetal development, birth, and childhood, as well as some molecular mechanisms that could explain these associations.
Downloads
References
(1) Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136-143. DOI 10.1016/j.envint.2014.10.005.
(2) WHO. Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia [internet]. [Consultado 2017 August 28]. Disponible en: https://cutt.ly/EQ9zwKM
(3) Juda-Rezler K, Reizer M, Oudinet J-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos Environ. 2011;45(36):6557-66. DOI 10.1016/j.atmosenv.2011.08.020.
(4) Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res. 2020;27(34):42390-42404. DOI 10.1007/s11356-020-10574-w.
(5) WHO. Occupational and Environmental Health Team. Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre: actualización mundial 2005. Ed 2006 [Internet]. Ginebra: OM. [Accessed 2021 August 7]. Disponible en: https://cutt.ly/6Q9mGep
(6) WHO, Concentrations of fine particulate matter (PM2.5) [internet]. Ginebra: The global health observatory; 2020. [Accessed August 26, 2020]. Disponible en: https://bit.ly/3BelkrM
(7) Calidad del aire ambiente (exterior) y salud [internet]. Ginebra: OMS; 2020. [Accessed November 16, 2020]. Disponible en: https://bit.ly/3jhGpey
(8) Giovannini N, Schwartz L, Cipriani S, et al. Particulate matter (PM10) exposure, birth and fetal-placental weight and umbilical arterial pH: results from a prospective study. J Matern Fetal
Neonatal Med. 2018;31(5):651-655. DOI 10.1080/14767058.2017.1293032.
(9) Hogervorst JGF, Madhloum N, Saenen ND, et al. Prenatal particulate air pollution exposure and cord blood homocysteine in newborns: Results from the ENVIRONAGE birth cohort. Environ Res. 2019;168:507-513. DOI 10.1016/j.envres.2018.08.032.
(10) Bové H, Bongaerts E, Slenders E, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866. DOI 10.1038/s41467-019-11654-3.
(11) Liu N, Miyashita L, Mcphail G, Thangaratinam S, Grigg J. Late Breaking Abstract - Do inhaled carbonaceous particles translocate from the lung to the placenta? Eur Respir J. 2018;52(suppl 62). DOI 10.1183/13993003.congress-2018.PA360.
(12) Laurent O, Hu J, Li L, et al. Low birth weight and air pollution in California: Which sources and components drive the risk? Environ Int. 2016;92-93:471-477. DOI 10.1016/j.envint.2016.04.034.
(13) Liu Y, Xu J, Chen D, Sun P, Ma X. The association between air pollution and preterm birth and low birth weight in Guangdong, China. BMC Public Health. 2019;19(1):3. DOI 10.1186/s12889-018-6307-7.
(14) Han Y, Jiang P, Dong T, et al. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age. Ecotoxicol Environ Saf. 2018;157:457-462. DOI 10.1016/j.ecoenv.2018.04.002.
(15) Yang S, Tan Y, Mei H, et al. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China. Int J Hyg Environ Health. 2018;221(3):502-509. DOI 10.1016/j.ijheh.2018.01.014.
(16) Tang W, Du L, Sun W, et al. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor-β/Smad3 signaling. Toxicol Lett. 2017;267:11-20. DOI 10.1016/j.toxlet.2016.12.016.
(17) Rychlik KA, Secrest JR, Lau C, et al. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci. 2019;116(9):3443-3448. DOI 10.1073/pnas.1816103116.
(18) Eeden LV den, Lambrechts N, Verheyen V, Berth M, Schoeters G, Jacquemyn Y. Impact of particulate matter on mothers and babies in Antwerp (IPANEMA): a prospective cohort study on the impact of pollutants and particulate matter in pregnancy. BMJ Open. 2018;8(3):e020028. DOI 10.1136/bmjopen-2017-020028.
(19) Zhang Mingyu, Mueller Noel T, Wang Hongjian, Hong Xiumei, Appel Lawrence J, Wang Xiaobin. Maternal Exposure to Ambient Particulate Matter ≤2.5 μm During Pregnancy and the Risk for High Blood Pressure in Childhood. Hypertension. 2018;72(1):194-201. DOI 10.1161/HYPERTENSIONAHA.117.10944.
(20) Kim E, Park H, Hong Y-C, et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: mothers and Children’s Environmental Health (MOCEH) study. Sci Total Environ. 2014;481:439-445. DOI 10.1016/j.scitotenv.2014.01.107.
(21) Loftus CT, Hazlehurst MF, Szpiro AA, et al. Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate. Environ Res. 2019;176:108505. DOI 10.1016/j.envres.2019.05.036.
(22) Grevendonk L, Janssen BG, Vanpoucke C, et al. Mitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairs. Environ Health Glob Access Sci Source. 2016;15:10. DOI 10.1186/s12940-016-0095-2.
(23) Nachman RM, Mao G, Zhang X, et al. Intrauterine Inflammation and Maternal Exposure to Ambient PM2.5 during Preconception and Specific Periods of Pregnancy: The Boston Birth Cohort. Environ Health Perspect. 2016;124(10):1608-15. DOI 10.1289/EHP243.
(24) Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018;13(2):135-146. DOI 10.1080/15592294.2016.1155012.
(25) Harnung Scholten R, Møller P, Jovanovic Andersen Z, et al. Telomere length in newborns is associated with exposure to low levels of air pollution during pregnancy. Environ Int. 2021;146:106202. DOI 10.1016/j.envint.2020.106202.
(26) Clemente Diana BP, Casas Maribel, Vilahur Nadia, et al. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIRONAGE (Belgium) Birth Cohorts. Environ Health Perspect. 2016;124(5):659-665. DOI 10.1289/ehp.1408981.
(27) Metas mundiales de nutrición 2025: Documento normativo sobre bajo peso al nacer. [internet]. IRIS: OMS; 2020 [Accessed May 1, 2020]. Disponible en: https://bit.ly/3Bd9ldW
(28) Malley CS, Kuylenstierna JCI, Vallack HW, Henze DK, Blencowe H, Ashmore MR. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. Environ Int. 2017;101:173-182. DOI 10.1016/j.envint.2017.01.023.
(29) Pedersen M, Halldorsson TI, Olsen SF, et al. Impact of Road Traffic Pollution on Pre-eclampsia and Pregnancy-induced Hypertensive Disorders. Epidemiology. 2017;28(1):99. DOI 10.1097/EDE.0000000000000555.
(30) Wang Y, Li Q, Guo Y, et al. Association of Long-term Exposure to Airborne Particulate Matter of 1 μm or Less With Preterm Birth in China. JAMA Pediatr. 2018;172(3):e174872-e174872. DOI 10.1001/jamapediatrics.2017.4872.
(31) Wu H, Jiang B, Geng X, et al. Exposure to fine particulate matter during pregnancy and risk of term low birth weight in Jinan, China, 2014-2016. Int J Hyg Environ Health. 2018;221(2):183-190. DOI 10.1016/j.ijheh.2017.10.013.
(32) Liang Z, Yang Y, Qian Z, et al. Ambient PM2.5 and birth outcomes: Estimating the association and attributable risk using a birth cohort study in nine Chinese cities. Environ Int. 2019;126:329-335. DOI 10.1016/j.envint.2019.02.017.
(33) Han Y, Ji Y, Kang S, et al. Effects of particulate matter exposure during pregnancy on birth weight: A retrospective cohort study in Suzhou, China. Sci Total Environ. 2018;615:369-374. DOI 10.1016/j.scitotenv.2017.09.236.
(34) Yuan L, Zhang Y, Wang W, et al. Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere. 2020;240:124904. DOI 10.1016/j.chemosphere.2019.124904.
(35) Raz Raanan, Roberts Andrea L, Lyall Kristen, et al. Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses’ Health Study II Cohort. Environ Health Perspect. 2015;123(3):264-270. DOI 10.1289/ehp.1408133.
(36) Zhang T, Zheng X, Wang X, et al. Maternal Exposure to PM2.5 during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci. 2018;19(1). DOI 10.3390/ijms19010257.
(37) Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. The Lancet. 2006;368(9553):2167-2178. DOI 10.1016/S0140-6736(06)69665-7.
(38) Neurotoxicity of air pollution: Role of neuroinflammation. Adv Neurotoxicology. 2019;3:195-221. DOI 10.1016/bs.ant.2018.10.007.
(39) Guxens M, Garcia-Esteban R, Giorgis-Allemand L, et al. Air Pollution During Pregnancy and Childhood Cognitive and Psychomotor Development: Six European Birth Cohorts. Epidemiology. 2014;25(5):636-47. DOI 10.1097/EDE.0000000000000133.
(40) Chiu Y-HM, Hsu H-HL, Coull BA, et al. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sexspecific associations. Environ Int. 2016;87:56-65. DOI 10.1016/j.envint.2015.11.010.
(41) Lertxundi A, Baccini M, Lertxundi N, et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15months of age. Environ Int. 2015;80:33-40. DOI 10.1016/j.envint.2015.03.007.
(42) Yorifuji T, Kashima S, Diez MH, Kado Y, Sanada S, Doi H. Prenatal exposure to outdoor air pollution and child behavioral problems at school age in Japan. Environ Int. 2017;99:192-198. DOI 10.1016/j.envint.2016.11.016.
(43) Roberts Andrea L, Lyall Kristen, Hart Jaime E, et al. Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants. Environ Health Perspect. 2013;121(8):978-984. DOI 10.1289/ehp.1206187.
(44) Frye RE, Cakir J, Rose S, et al. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol Psychiatry. Published online September 22, 2020:1-17. DOI 10.1038/s41380-020-00885-2.
(45) Jo H, Eckel SP, Wang X, et al. Sex-specific associations of autism spectrum disorder with residential air pollution exposure in a large Southern California pregnancy cohort. Environ Pollut. 2019;254:113010. DOI 10.1016/j.envpol.2019.113010.
(46) Kaufman JA, Wright JM, Rice G, Connolly N, Bowers K, Anixt J. Ambient ozone and fine particulate matter exposures and autism spectrum disorder in metropolitan Cincinnati, Ohio. Environ Res. 2019;171:218-227. DOI 10.1016/j.envres.2019.01.013.
(47) Jung C-R, Lin Y-T, Hwang B-F. Air Pollution and Newly Diagnostic Autism Spectrum Disorders: A Population-Based Cohort Study in Taiwan. PLOS ONE. 2013;8(9):e75510. DOI 10.1371/journal.pone.0075510.
(48) Talbott EO, Arena VC, Rager JR, et al. Fine particulate matter and the risk of autism spectrum disorder. Environ Res. 2015;140:414-420. DOI 10.1016/j.envres.2015.04.021.
(49) Kalkbrenner AE, Windham GC, Serre ML, et al. Particulate Matter Exposure, Prenatal and Postnatal Windows of Susceptibility, and Autism Spectrum Disorders. Epidemiology. 2015;26(1):30-42. DOI 10.1097/EDE.0000000000000173.
(50) Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, Mc- Connell R. Traffic-Related Air Pollution, Particulate Matter, and Autism. JAMA Psychiatry. 2013;70(1):71-77. DOI 10.1001/jamapsychiatry.2013.266.
(51) Bose S, Ross KR, Rosa MJ, et al. Prenatal particulate air pollution exposure and sleep disruption in preschoolers: Windows of susceptibility. Environ Int. 2019;124:329-335. DOI 10.1016/j.envint.2019.01.012.
(52) Masri S, Sassone-Corsi P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat Rev Neurosci. 2013;14(1):69-75. DOI 10.1038/nrn3393.
(53) Nawrot TS, Saenen ND, Schenk J, et al. Placental circadian pathway methylation and in utero exposure to fine particle air pollution. Environ Int. 2018;114:231-241. DOI 10.1016/j.envint.2018.02.034.
(54) Gorr MW, Velten M, Nelin TD, Youtz DJ, Sun Q, Wold LE. Early life exposure to air pollution induces adult cardiac dysfunction. Am J Physiol-Heart Circ Physiol. 2014;307(9):H1353-H1360. DOI 10.1152/ajpheart.00526.2014.
(55) Morales-Rubio RA, Alvarado-Cruz I, Manzano-LeónN, et al. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part Fibre Toxicol. 2019;16(1):7. DOI 10.1186/s12989-019-0289-1.
(56) Tanwar Vineeta, Gorr Matthew W., Velten Markus, et al. In Utero Particulate Matter Exposure Produces Heart Failure, Electrical Remodeling, and Epigenetic Changes at Adulthood. J Am Heart Assoc. 2017;6(4):e005796. DOI 10.1161/JAHA.117.005796.
(57) Breton CV, Mack WJ, Yao J, et al. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults. PloS One. 2016;11(3):e0150825. DOI 10.1371/journal.pone.0150825.
(58) Jung C-R, Chen W-T, Tang Y-H, Hwang B-F. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol. 2019;143(6):2254-2262.e5. DOI 10.1016/j.jaci.2019.03.024.
(59) Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther. 2007;114(2):129-45. DOI 10.1016/j.pharmthera.2007.01.011.
(60) Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. Section 1, Introduction [internet]. EE. UU: National Heart, Lung, and Blood Institute; 2007. [Accessed December 9, 2019]. Disponible en: https://bit.ly/38bDj5t
(61) Braman SS. The Global Burden of Asthma. CHEST. 2006;130(1):4S-12S. DOI 10.1378/chest.130.1_suppl.4S.
(62) Guarnieri M, Balmes JR. Outdoor air pollution and asthma. The Lancet. 2014;383(9928):1581-1592. DOI 10.1016/S0140-6736(14)60617-6.
(63) Lee A, Leon Hsu H-H, Mathilda Chiu Y-H, et al. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J Allergy Clin Immunol. 2018;141(5):1880-1886. DOI 10.1016/j.jaci.2017.07.017.
(64) Cai Y, Hansell AL, Granell R, et al. Prenatal, Early-Life, and Childhood Exposure to Air Pollution and Lung Function: The ALSPAC Cohort. Am J Respir Crit Care Med. 2020;202(1):112-123. DOI 10.1164/rccm.201902-0286OC.
(65) Goshen S, Novack L, Erez O, et al. The effect of exposure to particulate matter during pregnancy on lower respiratory tract infection hospitalizations during first year of life. Environ Health. 2020;19. DOI 10.1186/s12940-020-00645-3.
(66) Nelissen ECM, van Montfoort APA, Dumoulin JCM, Evers JLH. Epigenetics and the placenta. Hum Reprod Update. 2011;17(3):397-417. DOI 10.1093/humupd/dmq052.
(67) Carvalho MA, Bernardes LS, Hettfleisch K, et al. Associations of maternal personal exposure to air pollution on fetal weight and fetoplacental Doppler: A prospective cohort study. Reprod Toxicol Elmsford N. 2016;62:9-17. DOI 10.1016/j.reprotox.2016.04.013.
(68) Herrera EA, Krause B, Ebensperger G, et al. The placental pursuit for an adequate oxidant balance between the mother and the fetus. Front Pharmacol. 2014;5. DOI 10.3389/fphar.2014.00149.
(69) Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005;592(1-2):119-137. DOI 10.1016/j.mrfmmm.2005.06.012.
(70) Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15(1):1-21. DOI 10.1080/10937404.2012.632359.
(71) Rosa MJ, Hsu H-HL, Just AC, et al. Association between prenatal particulate air pollution exposure and telomere length in cord blood: Effect modification by fetal sex. Environ Res. 2019;172:495-501. DOI 10.1016/j.envres.2019.03.003.
(72) Martens DS, Nawrot TS. Air Pollution Stress and the Aging Phenotype: The Telomere Connection. Curr Environ Health Rep. 2016;3(3):258-269. DOI 10.1007/s40572-016-0098-8.
(73) Saenen ND, Vrijens K, Janssen BG, et al. Placental Nitrosative Stress and Exposure to Ambient Air Pollution During Gestation: A Population Study. Am J Epidemiol. 2016;184(6):442-449. DOI 10.1093/aje/kww007.
(74) Rossner P, Tabashidze N, Dostal M, et al. Genetic, biochemical, and environmental factors associated with pregnancy outcomes in newborns from the Czech Republic. Environ Health Perspect. 2011;119(2):265-271. DOI 10.1289/ehp.1002470.
(75) McCully KS. Homocysteine Metabolism, Atherosclerosis, and Diseases of Aging. In: Comprehensive Physiology. American Cancer Society. 2015:471-505. DOI 10.1002/cphy.c150021.
(76) Lai WKC, Kan MY. Homocysteine-Induced Endothelial Dysfunction. Ann Nutr Metab. 2015;67(1):1-12. DOI 10.1159/000437098.
(77) Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14. DOI 10.1186/1475-2891-14-6.
(78) Hannibal L, Blom HJ. Homocysteine and disease: Causal associations or epiphenomenons?
Mol Aspects Med. 2017;53:36-42. DOI 10.1016/j.mam.2016.11.003.
(79) Backes CH, Nelin T, Gorr MW, Wold LE. Early Life Exposure to Air Pollution: How Bad Is It? Toxicol Lett. 2013;216(1):47-53. DOI 10.1016/j.toxlet.2012.11.007.
(80) Wright RJ, Brunst KJ. Programming of respiratory health in childhood: influence of outdoor air pollution. Curr Opin Pediatr. 2013;25(2):232-239. DOI 10.1097/MOP.0b013e32835e78cc.
(81) Muglia LJ, Katz M. The Enigma of Spontaneous Preterm Birth. N Engl J Med. 2010;362(6):529-535. DOI 10.1056/NEJMra0904308.
(82) de Melo JO, Soto SF, Katayama IA, et al. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicol Lett. 2015;232(2):475-480. DOI 10.1016/j.toxlet.2014.12.001.
(83) Qing H, Wang X, Zhang N, et al. The Effect of Fine Particulate Matter on the Inflammatory Responses in Human Upper Airway Mucosa. Am J Respir Crit Care Med. 2019;200(10):1315-1318. DOI 10.1164/rccm.201903-0635LE.
(84) Tsai D-H, Amyai N, Marques-Vidal P, et al. Effects of particulate matter on inflammatory markers in the general adult population. Part Fibre Toxicol.2012;9:24. DOI 10.1186/1743-8977-9-24.
(85) Lee P-C, Talbott EO, Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiol Camb Mass. 2011;22(4):524-531. DOI 10.1097/EDE.0b013e31821c6c58.
(86) Tsai D-H, Riediker M, Berchet A, et al. Effects of shortand long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int. 2019;26(19):19697-19704. DOI 10.1007/s11356-019-05194-y.
(87) Wu W, Muller R, Berhane K, et al. Inflammatory Response of Monocytes to Ambient Particles Varies by Highway Proximity. Am J Respir Cell Mol Biol. 2014;51(6):802-809. DOI 10.1165/rcmb.2013-0265OC.
(88) Familari M, Nääv Å, Erlandsson L, et al. Exposure of trophoblast cells to fine particulate matter air pollution leads to growth inhibition, inflammation and ER stress. PLOS ONE. 2019;14(7):e0218799. DOI 10.1371/journal.pone.0218799.
(89) Gravett MG, Rubens CE, Nunes TM, the GAPPS Review Group. Global report on preterm birth and stillbirth (2 of 7): discovery science. BMC Pregnancy Childbirth. 2010;10(1):S2. DOI 10.1186/1471-2393-10-S1-S2.
(90) Zaga-Clavellina V, Merchant-Larios H, García-López G, Maida-Claros R, Vadillo-Ortega F. Differential secretion of matrix metalloproteinase-2 and -9 after selective infection with group B streptococci in human fetal membranes. J Soc Gynecol Investig. 2006;13(4):271-279. DOI 10.1016/j.jsgi.2006.02.006.
(91) Fink NR, Chawes B, Bønnelykke K, et al. Levels of Systemic Low-grade Inflammation in Pregnant Mothers and Their Offspring are Correlated. Sci Rep. 2019;9(1):3043. DOI 10.1038/s41598-019-39620-5.
(92) Catov JM, Bodnar LM, Ness RB, Barron SJ, Roberts JM. Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am J Epidemiol. 2007;166(11):1312-1319. DOI 10.1093/aje/kwm273.
(93) van den Hooven EH, de Kluizenaar Y, Pierik FH, et al. Chronic Air Pollution Exposure during Pregnancy and Maternal and Fetal C-Reactive Protein Levels: The Generation R Study. Environ Health Perspect. 2012;120(5):746-751. DOI 10.1289/ehp.1104345.
(94) Peng C-C, Chang J-H, Lin H-Y, Cheng P-J, Su B-H. Intrauterine inflammation, infection, or both (Triple I): A new concept for chorioamnionitis. Pediatr Neonatol. 2018;59(3):231-237. DOI 10.1016/j.pedneo.2017.09.001.
(95) Fedulov AV, Leme A, Yang Z, et al. Pulmonary Exposure to Particles during Pregnancy Causes Increased Neonatal Asthma Susceptibility. Am J Respir Cell Mol Biol. 2008;38(1):57-67. DOI 10.1165/rcmb.2007-0124OC.
(96) Mauad T, Rivero DHRF, de Oliveira RC, et al. Chronic Exposure to Ambient Levels of Urban Particles Affects Mouse Lung Development. Am J Respir Crit Care Med. 2008;178(7):721-728. DOI 10.1164/rccm.200803-436OC.
(97) Skvortsova K, Iovino N, Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19(12):774-790. DOI 10.1038/s41580-018-0074-2.
(98) Robins JC, Marsit CJ, Padbury JF, Sharma SS. Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci Elite Ed. 2011;3:690-700.
(99) Breton Carrie V, Yao Jin, Millstein Josh, et al. Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation andChildhood Blood Pressure and Carotid Intima-Media Thickness in the Children’s Health Study. Environ Health Perspect. 2016;124(12):1905-1912. DOI 10.1289/EHP181.
(100) J C, Y Z, P L, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;607-608:1103-1108. DOI 10.1016/j.scitotenv.2017.07.029.
(101) Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol Elmsford N. 2011;31(3):363-373. DOI 10.1016/j.reprotox. 2010.12.055.
(102) Whayne TF. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol Biol Rep. 2015;42(4):765-776. DOI 10.1007/s11033-014-3727-z.
(103) Janssen BG, Godderis L, Pieters N, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10(1):22. DOI 10.1186/1743-8977-10-22.
(104) Yao B, Christian KM, He C, Jin P, Ming G, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 2016;17(9):537-549. DOI 10.1038/nrn.2016.70.
(105) Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the human preimplantation embryo. Nature. 2014;511(7511):611-615. DOI 10.1038/nature13581.
(106) Hu X, Zhang L, Mao S-Q, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-toepithelial transition in somatic cell reprogramming. Cell Stem Cell. 2014;14(4):512-522. DOI 10.1016/j.stem.2014.01.001.
(107) Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature.
;502(7472):472-479. DOI 10.1038/nature12750.
(108) Maghbooli Z, Hossein-nezhad A, Adabi E, et al. Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLOS ONE. 2018;13(7):e0199772. DOI 10.1371/journal.pone.0199772.
(109) Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. Curr Pharmacogenomics Pers Med. 2012;10(4):314-321.
(110) Neven KY, Saenen ND, Tarantini L, et al. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study. Lancet Planet Health. 2018;2(4):e174-e183. DOI 10.1016/S2542-5196(18)30049-4.
(111) Sagawa N, Yura S, Itoh H, et al. Possible role of placental leptin in pregnancy. Endocrine. 2002;19(1):65-71. DOI 10.1385/ENDO:19:1:65.
(112) Lesseur C, Armstrong DA, Murphy MA, et al. Sex-specific associations between placental leptin promoter DNA methylation and infant neurobehavior. Psychoneuroendocrinology. 2014;40:1-9. DOI 10.1016/j.psyneuen.2013.10.012.
(113) Saenen ND, Vrijens K, Janssen BG, et al. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort. Environ Health Perspect. 2017;125(2):262-268. DOI 10.1289/EHP38.
(114) Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1-2):85-90. DOI 10.1016/j.mrfmmm.2011.03.004.
(115) Wilczynska A, Bushell M. The complexity of miRNAmediated repression. Cell Death Differ. 2015;22(1):22-33. DOI 10.1038/cdd.2014.112.
(116) Saenen ND, Plusquin M, Bijnens E, et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. Environ Health Perspect. 2015;123(8):834-840. DOI 10.1289/ehp.1408549.
(117) Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth. PLoS ONE. 2011;6(6). DOI 10.1371/journal.pone.0021210.
(118) Martens DS, Cox B, Janssen BG, et al. Prenatal Air Pollution and Newborns’ Predisposition to Accelerated Biological Aging. JAMA Pediatr. 2017;171(12):1160-1167. DOI 10.1001/jamapediatrics.2017.3024.
(119) Song L, Zhang B, Liu B, et al. Effects of maternal exposure to ambient air pollution on newborn telomere length. Environ Int. 2019;128:254-260. DOI 10.1016/j.envint.2019.04.064.
(120) Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging. 2016;8(2):216-229.
(121) Pieters N, Janssen BG, Dewitte H, et al. Biomolecular Markers within the Core Axis of Aging and Particulate Air Pollution Exposure in the Elderly: A Cross-Sectional Study. Environ Health Perspect. 2016;124(7):943-950. DOI 10.1289/ehp.1509728.
(122) Sabharwal S, Verhulst S, Guirguis G, et al. Telomere length dynamics in early life: the blood-and-muscle model. FASEB J. 2017;32(1):529-534. DOI 10.1096/fj.201700630R.
(123) Kumaran K, Osmond C, Fall CHD. Early Origins of Cardiometabolic Disease. En: Cardiovascular, Respiratory, and Related Disorders 3 rd [Internet]. Washintong: The World Bank; 2017. [Accessed January 12, 2021]. Disponible en: https://bit.ly/3ynnBz2
(124) Rosa MJ, Just AC, Guerra MS, et al. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environ Int. 2017;98:198-203. DOI 10.1016/j.envint.2016.11.007.
(125) Lee H-C, Wei Y-H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol. 2005;37(4):822-834. DOI 10.1016/j.biocel.2004.09.010.
(126) Wells PG, McCallum GP, Chen CS, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci Off J Soc Toxicol. 2009;108(1):4-18. DOI 10.1093/toxsci/kfn263.
(127) Janssen BG, Munters E, Pieters N, et al. Placental mitochondrial DNA content and particulate air pollution during in utero life. Environ Health Perspect. 2012;120(9):1346-1352. DOI 10.1289/ehp.1104458.
(128) Hu C, Sheng X, Li Y, et al. Effects of prenatal exposure to particulate air pollution on newborn mitochondrial DNA copy number. Chemosphere. 2020;253:126592. DOI 10.1016/j.chemosphere.2020.126592.
(129) Brunst KJ, Sanchez-Guerra M, Chiu Y-HM, et al. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. Environ Int. 2018;112:49-58. DOI 10.1016/j.envint.2017.12.020.
(130) Iodice S, Hoxha M, Ferrari L, Carbone IF, Anceschi C, Miragoli M, Pesatori AC, Persico N, Bollati V. Particulate Air Pollution, Blood Mitochondrial DNA Copy Number, and Telomere Length in Mothers in the First Trimester of Pregnancy: Effects on Fetal Growth. Oxid Med Cell Longev. 2018 Nov 5;2018:5162905. DOI 10.1155/2018/5162905.
(131) Janssen BG, Byun H-M, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics. 2015;10(6):536-544. DOI 10.1080/15592294.2015.1048412.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Papers published in the journal are available for use under the Creative Commons license, specifically Attribution-NonCommercial-ShareAlike 4.0 International.
The papers must be unpublished and sent exclusively to the Journal Iatreia; the author uploading the contribution is required to submit two fully completed formats: article submission and authorship responsibility.