Factores solubles con actividad antiviral: en búsqueda de nuevos blancos terapéuticos para la infección por el VIH-1

Autores/as

  • Susana Urquijo-Sánchez Universidad de Antioquia
  • Natalia Andrea Taborda-Vanegas Universidad de Antioquia
  • María Teresa Rugeles-López Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.iatreia.18039

Palabras clave:

antivirales , inmunidad, proteínas virales, replicación viral, Síndrome de Inmunodeficiencia Adquirida, VIH

Resumen

Los mecanismos innatos antivirales han resultado de gran interés debido a su uso potencial para la prevención y tratamiento de la infección por el VIH. En particular, los factores solubles antivirales han sido objeto de múltiples investigaciones por su capacidad de inhibir diferentes pasos del ciclo replicativo viral y de potenciar la respuesta inmune del hospedero. Entre estos factores solubles se destacan TRIM-5α, APOBEC3G, SAMHD1, ELAFIN, SERPINA1 y SLPI, que actúan directamente sobre la partícula viral o la célula, o promueven la producción de moléculas involucradas en la respuesta inmune contra el virus. Algunos de ellos se han correlacionado con un bajo riesgo de adquirir la infección por el VIH o con una lenta progresión a sida. La exploración de los mecanismos antivirales de estas proteínas es requisito para el desarrollo de nuevas alternativas terapéuticas.

|Resumen
= 176 veces | PDF
= 76 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Susana Urquijo-Sánchez, Universidad de Antioquia

Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

Natalia Andrea Taborda-Vanegas, Universidad de Antioquia

Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

María Teresa Rugeles-López, Universidad de Antioquia

Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

Citas

(1.) UNAIDS. Global report: UNAIDS report on the global AIDS epidemic 2013. Geneva: UNAIDS; 2013.

(2.) Longenecker CT, Hileman CO, Carman TL, Ross AC, Seydafkan S, Brown TT, et al. Vitamin D supplementation and endothelial function in vitamin D deficient HIV-infected patients: a randomized placebo-controlled trial. Antivir Ther. 2012 Jan;17(4):613–21.

(3.) Ramjee G, Kamali A, McCormack S. The last decade of microbicide clinical trials in Africa: from hypothesis to facts. AIDS. 2010 Oct;24 Suppl 4:S40–9.

(4.) Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol. 2013 Jan;4:343.

(5.) Santana A, Domínguez C, Lemes A, Molero T, Salido E. Biología celular y molecular del virus de inmunodeficiencia humana (VIH). Rev Diagn Biol. 2003;52(1):7–18.

(6.) Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–48.

(7.) Freed EO. HIV-1 replication. Somat Cell Mol Genet. 2001 Nov;26(1-6):13–33.

(8.) Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013 Jul;254(1):326–42.

(9.) Ameli M GI, Gutiérrez G C del R. Infección por VIH-1 en pacientes no progresores a largo tiempo. INHRR. 2007;38(2):55–61.

(10.) Blankson JN. Effector mechanisms in HIV-1 infected elite controllers: highly active immune responses? Antiviral Res. 2010 Jan;85(1):295–302.

(11.) Groves KC, Bibby DF, Clark DA, Isaksen A, Deayton JR, Anderson J, et al. Disease Progression in HIV-1-Infec-ted Viremic Controllers. J Acquir Immune Defic Syn-dr. 2012 Dec 1;61(4):407–16.

(12.) Miyazawa M, Lopalco L, Mazzotta F, Lo Caputo S, Veas F, Clerici M. The “immunologic advantage” of HIV-exposed seronegative individuals. AIDS. 2009 Jan 14;23(2):161–75.

(13.) de la Tribonnière X, Yazdanpanah Y, Reynes J. [CCR5 antagonists: a new class of antiretrovirals]. Med Mal Infect. 2008 Mar;38 Suppl 1:S1–6.

(14. ) Lee AW, Truong T, Bickham K, Fonteneau J-F, Larsson M, Da Silva I, et al. A clinical grade cocktail of cytoki-nes and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for im-munotherapy. Vaccine. 2002 Dec 19;20 Suppl 4:A8–A22.

(15.) Nittayananta W, Kemapunmanus M, Yangngam S, Ta-lungchit S, Sriplung H. Expression of oral secretory leukocyte protease inhibitor in HIV-infected subjects with long-term use of antiretroviral therapy. J Oral Pathol Med. 2013 Mar;42(3):208–15.

(16.) Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol. 2012 Apr;2(2):142–50.

(17.) Vandegraaff N, Engelman A. Molecular mechanisms of HIV integration and therapeutic intervention. Ex-pert Rev Mol Med. 2007 Jan;9(6):1–19.

(18.) Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fit-tipaldi A, Lusic M, et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 2005 Sep 7;24(17):3070–81.

(19.) Vallur AC, Yabuki M, Larson ED, Maizels N. AID in antibody perfection. Cell Mol Life Sci. 2007 Mar;64(5):555–65.

(20.)Taggart CC, Cryan S-A, Weldon S, Gibbons A, Gre-ene CM, Kelly E, et al. Secretory leucoprotease in-hibitor binds to NF-kappaB binding sites in mono-cytes and inhibits p65 binding. J Exp Med. 2005 Dec 19;202(12):1659–68.

(21.) White TE, Brandariz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen L, Kim B, et al. Contribution of SAM and HD domains to retroviral restriction mediated by hu-man SAMHD1. Virology. 2013 Feb 5;436(1):81–90.

(22.) Prado-Montes de Oca E. [Human defensins: pro-phylaxis and therapy against HIV?]. Gac Med Mex. 2006;142(5):431–3.

(23.) Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD. Restriction of human immunodefi-ciency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol. 2005 Dec;79(24):15567–72.

(24.) Short KM, Cox TC. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem. 2006 Mar 31;281(13):8970–80.

(25.) Rold CJ, Aiken C. Proteasomal degradation of TRI-M5alpha during retrovirus restriction. PLoS Pathog. 2008 May;4(5):e1000074.

(26.) Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral re-plication. J Virol. 2002 Jun;76(11):5667–77.

(27.) Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al. Specific recognition and accelerated un-coating of retroviral capsids by the TRIM5alpha res-triction factor. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5514–9.

(28.) Hochstrasser M. Ubiquitin, proteasomes, and the re-gulation of intracellular protein degradation. Curr Opin Cell Biol. 1995 Apr;7(2):215–23.

(29.) Sewram S, Singh R, Kormuth E, Werner L, Mlisana K, Karim SSA, et al. Human TRIM5alpha expression le-vels and reduced susceptibility to HIV-1 infection. J Infect Dis. 2009 Jun 1;199(11):1657–63.

(30.) Yap MW, Nisole S, Stoye JP. A single amino acid chan-ge in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol. 2005 Jan 11;15(1):73–8.

(31.) Price H, Lacap P, Tuff J, Wachihi C, Kimani J, Ball TB, et al. A TRIM5alpha exon 2 polymorphism is associated with protection from HIV-1 infection in the Pumwani sex worker cohort. AIDS. 2010 Jul 31;24(12):1813–21.

(32.) Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol. 2007 Mar;81(5):2165–78.

(33.) Bennett RP, Presnyak V, Wedekind JE, Smith HC. Nu-clear Exclusion of the HIV-1 host defense factor APO-BEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem. 2008 Mar 21;283(12):7320–7.

(34.) Okeoma CM, Huegel AL, Lingappa J, Feldman MD, Ross SR. APOBEC3 proteins expressed in mammary epithelial cells are packaged into retroviruses and can restrict transmission of milk-borne virions. Cell Host Microbe. 2010 Dec 16;8(6):534–43.

(35.) Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, et al. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem. 2004 Aug 20;279(34):35822–8.

(36.) Shirakawa K, Takaori-Kondo A, Kobayashi M, Tomo-naga M, Izumi T, Fukunaga K, et al. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-Elon-ginC complex. Virology. 2006 Jan 20;344(2):263–6.

(37.) Reddy K, Winkler CA, Werner L, Mlisana K, Abdool Karim SS, Ndung’u T. APOBEC3G expression is dysre-gulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma vi-ral load. AIDS. 2010 Jan 16;24(2):195–204.

(38.) Cen S, Peng Z-G, Li X-Y, Li Z-R, Ma J, Wang Y-M, et al. Small molecular compounds inhibit HIV-1 replica-tion through specifically stabilizing APOBEC3G. J Biol Chem. 2010 May 28;285(22):16546–52.

(39.) Vázquez-Pérez JA, Ormsby CE, Hernández-Juan R, To-rres KJ, Reyes-Terán G. APOBEC3G mRNA expression in exposed seronegative and early stage HIV infec-ted individuals decreases with removal of exposure and with disease progression. Retrovirology. 2009 Jan;6:23.

(40.) Biasin M, Piacentini L, Lo Caputo S, Kanari Y, Magri G, Trabattoni D, et al. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals. J Infect Dis. 2007 Apr 1;195(7):960–4.

(41.) Zhao M, Geng W, Jiang Y, Han X, Cui H, Dai D, et al. The associations of hA3G and hA3B mRNA levels with HIV disease progression among HIV-infected individuals of China. J Acquir Immune Defic Syndr. 2010 Feb;53 Suppl 1:S4–9.

(42.) Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restric-tion factor counteracted by Vpx. Nature. 2011 Jun 30;474(7353):654–7.

(43.) Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retroviro-logy. 2012 Jan;9:87.

(44.) Cribier A, Descours B, Valadão ALC, Laguette N, Ben-kirane M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep. 2013 Apr 25;3(4):1036–43.

(45.) Amie SM, Bambara RA, Kim B. GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem. 2013 Aug 30;288(35):25001–6.

(46.) Beloglazova N, Flick R, Tchigvintsev A, Brown G, Po-povic A, Nocek B, et al. Nuclease activity of the hu-man SAMHD1 protein implicated in the Aicardi-Gou-tieres syndrome and HIV-1 restriction. J Biol Chem. 2013 Mar 22;288(12):8101–10.

(47.) Laguette N, Rahm N, Sobhian B, Chable-Bessia C, Münch J, Snoeck J, et al. Evolutionary and functio-nal analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx pro-tein. Cell Host Microbe. 2012 Feb 16;11(2):205–17.

(48.) Ahn J, Hao C, Yan J, DeLucia M, Mehrens J, Wang C, et al. HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin li-gase complex CRL4DCAF1. J Biol Chem. 2012 Apr 6;287(15):12550–8.

(49.) Hofmann H, Logue EC, Bloch N, Daddacha W, Pols-ky SB, Schultz ML, et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nu-cleus. J Virol. 2012 Dec;86(23):12552–60.

(50.) Bloch N, O’Brien M, Norton TD, Polsky SB, Bhardwaj N, Landau NR. HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high le-vels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retroviruses. 2014 Feb;30(2):195–203.

(51.) Bobardt MD, Chatterji U, Selvarajah S, Van der Schueren B, David G, Kahn B, et al. Cell-free hu-man immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J Virol. 2007 Jan;81(1):395–405.

(52.) King AE, Critchley HOD, Kelly RW. Innate immune defences in the human endometrium. Reprod Biol Endocrinol. 2003 Nov 28;1:116.

(53.) Drannik AG, Nag K, Yao X-D, Henrick BM, Sa-llenave J-M, Rosenthal KL. Trappin-2/elafin mo-dulate innate immune responses of human endo-metrial epithelial cells to PolyI:C. PLoS One. 2012 Jan;7(4):e35866.

(54.) Sallenave JM, Shulmann J, Crossley J, Jordana M, Gauldie J. Regulation of secretory leukocyte protei-nase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cyto-kines and neutrophilic enzymes. Am J Respir Cell Mol Biol. 1994 Dec;11(6):733–41.

(55.) Drannik AG, Nag K, Yao X-D, Henrick BM, Ball TB, Plummer FA, et al. Anti-HIV-1 activity of elafin de-pends on its nuclear localization and altered innate immune activation in female genital epithelial cells. PLoS One. 2012 Jan;7(12):e52738.

(56.) Baranger K, Zani M-L, Chandenier J, Dallet-Choisy S, Moreau T. The antibacterial and antifungal pro-perties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J. 2008 May;275(9):2008–20.

(57.) Ghosh M, Shen Z, Fahey J V, Cu-Uvin S, Mayer K, Wira CR. Trappin-2/Elafin: a novel innate anti-hu-man immunodeficiency virus-1 molecule of the hu-man female reproductive tract. Immunology. 2010 Feb;129(2):207–19.

(58.) Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tr-emblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010 Apr;6(4):e1000852.

(59.) Patel M V, Fahey J V, Rossoll RM, Wira CR. Innate im-munity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells. Am J Reprod Immunol. 2013 May;69(5):463–74.

(60.) John M, Keller MJ, Fam EH, Cheshenko N, Hogarty K, Kasowitz A, et al. Cervicovaginal secretions contribu-te to innate resistance to herpes simplex virus infec-tion. J Infect Dis. 2005 Nov 15;192(10):1731–40.

(61.) King AE, Critchley HOD, Sallenave J-M, Kelly RW. Ela-fin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstrua-tion. J Clin Endocrinol Metab. 2003 Sep;88(9):4426–31.

(62.) Jasinghe VJ, Peyrotte EA, Meyers AFA, Gajanayaka N, Ball TB, Sandstrom P, et al. Human rElafin Inhibits HIV-1 Replication in Its Natural Target Cells. Biores Open Access. 2013 Apr;2(2):128–37.

(63.) Iqbal SM, Ball TB, Levinson P, Maranan L, Jaoko W, Wa-chihi C, et al. Elevated elafin/trappin-2 in the female genital tract is associated with protection against HIV acquisition. AIDS. 2009 Aug 24;23(13):1669–77.

(64.) Congote LF. Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Res. 2007 May;125(2):119–34.

(65.) Clemmensen SN, Jacobsen LC, Rørvig S, Askaa B, Christenson K, Iversen M, et al. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exo-cytosis. Eur J Haematol. 2011 Jun;86(6):517–30.

(66.) Lewis EC, Mizrahi M, Toledano M, Defelice N, Wright JL, Churg A, et al. alpha1-Antitrypsin monothera-py induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16236–41.

(67.) Pott GB, Chan ED, Dinarello CA, Shapiro L. Alpha-1-antitrypsin is an endogenous inhibitor of proin-flammatory cytokine production in whole blood. J Leukoc Biol. 2009 May;85(5):886–95.

(68.) Bucurenci N, Blake DR, Chidwick K, Winyard PG. In-hibition of neutrophil superoxide production by hu-man plasma alpha 1-antitrypsin. FEBS Lett. 1992 Mar 23;300(1):21–4.

(69.) Lewis EC. Expanding the clinical indications for α(1)-antitrypsin therapy. Mol Med. 2012 Jan;18:957–70.

(70.) Münch J, Ständker L, Adermann K, Schulz A, Schind-ler M, Chinnadurai R, et al. Discovery and optimiza-tion of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell. 2007 Apr 20;129(2):263–75.

(71.) Bryan CL, Beard KS, Pott GB, Rahkola J, Gardner EM, Janoff EN, et al. HIV infection is associated with redu-ced serum alpha-1-antitrypsin concentrations. Clin Invest Med. 2010 Jan;33(6):E384–9.

(72.) Rahman S, Rabbani R, Wachihi C, Kimani J, Plummer FA, Ball TB, et al. Mucosal serpin A1 and A3 levels in HIV highly exposed sero-negative women are affected by the menstrual cycle and hormonal contraceptives but are independent of epidemiological confoun-ders. Am J Reprod Immunol. 2013 Jan;69(1):64–72.

(73.) Doumas S, Kolokotronis A, Stefanopoulos P. Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor. Infect Immun. 2005 Mar;73(3):1271–4.

(74.) Jana NK, Gray LR, Shugars DC. Human immunode-ficiency virus type 1 stimulates the expression and production of secretory leukocyte protease inhibitor (SLPI) in oral epithelial cells: a role for SLPI in innate mucosal immunity. J Virol. 2005 May;79(10):6432–40.

(75.) Ma G, Greenwell-Wild T, Lei K, Jin W, Swisher J, Har-degen N, et al. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med. 2004 Nov 15;200(10):1337–46.

(76.) Gaudin R, Berre S, Cunha de Alencar B, Decalf J, Schindler M, Gobert F-X, et al. Dynamics of HIV-containing compartments in macrophages reveal se-questration of virions and transient surface connec-tions. PLoS One. 2013 Jan;8(7):e69450.

(77.) Zobiack N, Rescher U, Laarmann S, Michgehl S, Schmidt MA, Gerke V. Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J Cell Sci. 2002 Jan 1;115(Pt 1):91–8.

(78.) McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM. Inhibition of human immunodeficiency virus type 1 infectivity by se-cretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood. 1997 Aug 1;90(3):1141–9.

(79.) Wahl SM, McNeely TB, Janoff EN, Shugars D, Worley P, Tucker C, et al. Secretory leukocyte protease inhi-bitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis. 1997 May;3 Suppl 1:S64–9.

(80.) Kazmi SH, Naglik JR, Sweet SP, Evans RW, O’Shea S, Banatvala JE, et al. Comparison of human immuno-deficiency virus type 1-specific inhibitory activities in saliva and other human mucosal fluids. Clin Vaccine Immunol. 2006 Oct;13(10):1111–8.

(81.) Burgener A, Mogk K, Westmacott G, Plummer F, Ball B, Broliden K, et al. Salivary basic proline-rich proteins are elevated in HIV-exposed seronega-tive men who have sex with men. AIDS. 2012 Sep 24;26(15):1857–67.

(82.) Shugars DC, Sauls DL, Weinberg JB. Secretory leuko-cyte protease inhibitor blocks infectivity of primary monocytes and mononuclear cells with both mono-cytotropic and lymphocytotropic strains of human immunodeficiency virus type I. Oral Dis. 1997 May;3 Suppl 1:S70–2.

Descargas

Publicado

29-12-2014

Cómo citar

1.
Urquijo-Sánchez S, Taborda-Vanegas NA, Rugeles-López MT. Factores solubles con actividad antiviral: en búsqueda de nuevos blancos terapéuticos para la infección por el VIH-1. Iatreia [Internet]. 29 de diciembre de 2014 [citado 22 de enero de 2025];28(1):44-5. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/18039

Número

Sección

Artículos de revisión