CO2 reforming of methane over Ni-Mg-Al-Ce mixed oxides derived from hydrotalcites: Mg/Ni ratio effect

Authors

  • Carlos Enrique Daza National University of Colombia
  • Fanor Mondragón University of Antioquia
  • Sonia Moreno National University of Colombia
  • Rafael Molina National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.14645

Keywords:

cerium, reforming, methane, syngas, hydrotalcite

Abstract

Ni-Ce/Mg-Al catalysts were obtained by means of the hydrotalcite reconstruction method in the presence of [Ce(EDTA)]- complex. The effect of the Mg/Ni ratio was studied when the mixed oxide was reconstructed with 3 wt. % Ce loadings. The materials were characterized by X-Ray Diffraction (XRD), Thermal-Gravimetric Analysis (TGA), Temperature-Programmed Reduction (TPR-H2), Temperature-Programmed Oxidation (TPO) and CO2Temperature-Programmed Desorption (TPD-CO2). The reduced catalysts were tested in CO2 reforming of methane under two operation regimens: i) reaction between 500 to 800ºC using volumetric ratios of CH4/CO2/Ar=5/5/40 and, ii) isothermal reaction at 700ºC using volumetric ratios of CH4/CO2=18/22 without diluent gas. The solids showed strong basic characteristics and high Ni-surface interactions which determined their catalytic performance. Catalysts with Mg/Ni molar ratios of 2 and 4 showed high CH4 and CO2 conversions with H2/CO molar ratios between 0.7 and 1.1 without coke formation under severe isothermal reaction conditions. The yields and activities were higher when reduction increased.

|Abstract
= 187 veces | PDF (ESPAÑOL (ESPAÑA))
= 81 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Enrique Daza, National University of Colombia

Solid State and Environmental Catalysis (ESCA). Chemistry Department. Science Faculty.

Fanor Mondragón, University of Antioquia

Química de Recursos Energéticos y Medio Ambiente.

Sonia Moreno, National University of Colombia

Solid State and Environmental Catalysis (ESCA). Chemistry Department. Science Faculty.

Rafael Molina, National University of Colombia

Solid State and Environmental Catalysis (ESCA). Chemistry Department. Science Faculty.

References

Y. H. Hu, E. Ruckenstein. “Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming”. Adv. Catal. Vol. 48 2004. pp. 297- 345. DOI: https://doi.org/10.1016/S0360-0564(04)48004-3

C. E. Daza, A. Kiennemann, S. Moreno, R. Molina. “Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay”. Appl. Catal. A. Vol. 364. 2009. pp. 65-74. DOI: https://doi.org/10.1016/j.apcata.2009.05.029

C. E. Daza, A. Kiennemann, S. Moreno, R. Molina. “Stability of Ni-Ce catalysts supported over Al-PVA mineral clay in dry reforming of methane”. Energy Fuels. Vol. 23. 2009. pp. 3497-3509. DOI: https://doi.org/10.1021/ef9000874

C. E. Daza, J. Gallego, F. Mondragon, S. Moreno, R. Molina. “High stability of Ce-promoted Ni-Mg-Al catalysts derived from hydrotalcites for dry reforming of methane”. Fuel. Vol. 89. 2010. pp. 592-603. DOI: https://doi.org/10.1016/j.fuel.2009.10.010

C. E. Daza, J. Gallego, J. A. Moreno, F. Mondragon, S. Moreno, R. Molina. “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides”. Catal. Today. Vol. 133- 135. 2008. pp 357-365. DOI: https://doi.org/10.1016/j.cattod.2007.12.081

A. Tsyganok, P. J. E. Harlick, A. Sayari. “Nonoxidative conversion of ethane to ethylene over transition metals supported on Mg-Al mixed oxide: Preliminary screening of catalytic activity and coking ability”. Catal. Comm. Vol. 8. 2007. pp 850-854. DOI: https://doi.org/10.1016/j.catcom.2006.09.010

A. Tsyganok, A. Sayari. “Incorporation of transition metals into Mg-Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator”. J. Solid State Chem. Vol. 179. 2006. pp. 1830-1841. DOI: https://doi.org/10.1016/j.jssc.2006.03.029

A. I. Tsyganok, M. Inaba, T. Tsunoda, S. Hamakawa, K. Suzuki, T. Hayakawa. “Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts”. Catal. Comm. Vol. 4. 2003. pp. 493-498. DOI: https://doi.org/10.1016/S1566-7367(03)00130-4

A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, T. Hayakawa. “Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides”. J. Catal. Vol. 213. 2003. pp. 191-203. DOI: https://doi.org/10.1016/S0021-9517(02)00047-7

Y. H. Hu. “Solid-solution catalysts for CO2 reforming of methane”. Catal. Today. Vol. 148. 2009. pp. 206- 211. DOI: https://doi.org/10.1016/j.cattod.2009.07.076

B. Levin, H. Zhu, M. Beland, N. Cicek, B. Holbein. “Potential for hydrogen and methane production from biomass residues in Canada”. Bioresource Tech. Vol. 98. 2007. pp. 654-660. DOI: https://doi.org/10.1016/j.biortech.2006.02.027

E. Ruckenstein, H. Wang. “Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts”. J. Catal. Vol. 205. 2002. pp. 289-293. DOI: https://doi.org/10.1006/jcat.2001.3458

G. Sierra, F. Mondragón, J. Barrault, J. Tatibouët, C. Batiot Dupeyrat. “CO2 reforming of CH4 over La–Ni based perovskite precursors”. Appl. Catal. A. Vol. 311. 2006. pp. 164-171. DOI: https://doi.org/10.1016/j.apcata.2006.06.024

G. Sierra, C. Batiot Dupeyrat, J. Barrault, E. Florez, F. Mondragón. “Dry reforming of methane over LaNi1−yByO3±δ (B = Mg, Co) perovskites used as catalyst precursor”. Appl. Catal. A. Vol. 334. 2008. pp. 251-258. DOI: https://doi.org/10.1016/j.apcata.2007.10.010

X. Cai, X. Dong, W. Lin, “Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane”. J. Natural Gas Chem. Vol. 17. 2008. pp. 98-102. DOI: https://doi.org/10.1016/S1003-9953(08)60033-X

Published

2013-02-28

How to Cite

Daza, C. E., Mondragón, F., Moreno, S., & Molina, R. (2013). CO2 reforming of methane over Ni-Mg-Al-Ce mixed oxides derived from hydrotalcites: Mg/Ni ratio effect. Revista Facultad De Ingeniería Universidad De Antioquia, (57), 66–74. https://doi.org/10.17533/udea.redin.14645