Performance evaluation of ceramic insulators coated with titanium dioxide films to reduce soiling
DOI:
https://doi.org/10.17533/udea.redin.15230Keywords:
titanium dioxide, ceramic insulators, atmospheric soilingAbstract
The soiling of in-service electrical insulators exposed to the atmosphere is a major problem in power transmission lines. Several inorganic and organic particulate materials are deposited on insulator surfaces forming a layer that could become conductive in the presence of moisture. This produces different phenomena that could deteriorate the insulating properties of the material and eventually lead to its rupture, affecting the electrical energy supply. Currently, a method based in the application of a titanium dioxide film is being developed. This method tries to minimize the pollution accumulation on the porcelain insulators without affecting their electrical properties. In this work the performance of two different thicknesses of the coating film on the porcelain insulators was evaluated by means of contact angle, adhesion, leakage current, dry-flashover voltage and erosion laboratory tests. Finally, the in-service behavior of coated and no-coated insulators installed in a power transmission tower was evaluated. The coated insulators showed a good performance in the laboratory tests. Moreover, before 5 months of exposure in the energized power line, a decrease in the soiling was observed.
Downloads
References
J. LaForest. Transmission line reference book, 345 kV and above. “Electric Power Research Institute EPRI”. Second Edition. Ed. Palo Alto. California. 1982. pp. 350-420.
A. Haddad, D. Warne. Advances in High Voltages Engineering. “IET Power and Energy Series”. First Edition. Ed. The Institution of Engineering and Technology. United Kingdom. 2009. pp. 257-279.
C. Bayliss, B. Hardy. “Transmission and Distribution Electrical Engineering”. Ed. Elsiever. Third Edition. Oxford. 2007. pp. 163-180.
M. Sforzini. “Testing of Polluted Insulators-The Present Situation and Problems of the Future”. The Franklin Institute. Vol. 6. 1972. pp. 437-468. DOI: https://doi.org/10.1016/0016-0032(72)90097-X
G. Muhsin, C. Mehmet. “The Pollution Flashover on High Voltage Insulators”. Electric Power Sistems Research. Vol. 78. 2008. pp. 1914-1921. DOI: https://doi.org/10.1016/j.epsr.2008.03.019
L. Hencker. “Consideraciones en la selección de aisladores bajo condiciones de contaminación atmosférica”. Boletín Técnico GAMMA Corona. Vol. 5. 2005. pp. 1-10.
S. Abdus, G. Hemen, N. Zia. “Determination of equivalent salt deposit density using wind velocity for a contaminated insulator”. Journal of Electrostatics. Vol. 63. 2005. pp. 37-44. DOI: https://doi.org/10.1016/j.elstat.2004.06.004
M. Abdel, A. El-Morshedy, R. Radwan. High-voltage engineering: theory and practice. “Electrical Engineering and Electronics”. Second Edition. Ed. Taylor & Francis. New York. 2000. pp. 350-356.
A. Cano. “Guía para la selección de aisladores bajo condiciones de contaminación”. Boletín Técnico GAMMA Corona. Vol. 36. 2006. pp. 1-12.
F. González. “Elementos de Líneas de Transmisión Aéreos”. Reporte de Investigación. Capítulo 1. 2007. pp. 1-53.
ASTM. “Standard Test Methods for Measuring Adhesion by Tape Test. West Conshohocken”. Pennsylvania. ASTM (Norma: ASTM D 3359-02). 2002. pp. 1-7.
ASTM. “Standard Test Method for Hydrophobic Contamination on Glass by Contact Angle Measurement”. West Conshohocken. Pennsylvania. ASTM (Norma: ASTM C 813). 2009. pp. 1-3.
P. Forbes. “Self-Cleaning Materials”. Scientific American. August 2008, (http://www.sciam.com/article.cfm?id=self-cleaning-materials). Consultado 2009. DOI: https://doi.org/10.1038/scientificamerican0808-88
W. Abdallah, J. Buckley, A. Carnegie, J. Edwards, E. Fordhman, A. Graue. “Fundamentos de la mojabilidad”. Seminario Schlumberger sobre mojabilidad. Oilfield Review. Vol. 19. 2007. pp. 48-67.
D. Menéndez, M. Miguez, A. Gómez. “Determinación del ángulo de contacto de un líquido sobre un sólido mediante una técnica de digitalización de imagen”. Investigación Aplicada Procesos superficiales. 5° Jornada de Desarrollo e innovación. Instituto Nacional de Tecnología Industrial. 2004. pp.1-2.
H. Abdullah, H. Taib, C. Sorell. “Coating methods for self-cleaning thick films of titania”. Advances in Applied Ceramics. Vol. 106. 2007. pp. 105 - 112. DOI: https://doi.org/10.1179/174367607X156061
B. Roland, D. Frank, Q. Jana, O. Marko. “Application of Titanium Dioxide Photo-catalysis to Created Self-Cleaning Building Materials”. Lacer. Vol. 5. 2000. pp. 157-168.
NTC. “Método de ensayo para aisladores de potencia eléctrica”. Norma Técnica Colombiana Electrotécnica. Colombia. NTC (Norma: NTC 1285). 2002. pp. 1-30.
ASTM. “Standard Test Method for Conducting Erosion test by Solid Particle Impingement Using Ga s Jets. West Conshohocken”. PASTM (Norma: ASTM G76). 2007. pp. 1-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.