Performance evaluation of ceramic insulators coated with titanium dioxide films to reduce soiling

Authors

DOI:

https://doi.org/10.17533/udea.redin.15230

Keywords:

titanium dioxide, ceramic insulators, atmospheric soiling

Abstract

The soiling of in-service electrical insulators exposed to the atmosphere is a major problem in power transmission lines. Several inorganic and organic particulate materials are deposited on insulator surfaces forming a layer that could become conductive in the presence of moisture. This produces different phenomena that could deteriorate the insulating properties of the material and eventually lead to its rupture, affecting the electrical energy supply. Currently, a method based in the application of a titanium dioxide film is being developed. This method tries to minimize the pollution accumulation on the porcelain insulators without affecting their electrical properties. In this work the performance of two different thicknesses of the coating film on the porcelain insulators was evaluated by means of contact angle, adhesion, leakage current, dry-flashover voltage and erosion laboratory tests. Finally, the in-service behavior of coated and no-coated insulators installed in a power transmission tower was evaluated. The coated insulators showed a good performance in the laboratory tests. Moreover, before 5 months of exposure in the energized power line, a decrease in the soiling was observed.

|Abstract
= 292 veces | PDF (ESPAÑOL (ESPAÑA))
= 87 veces|

Downloads

Download data is not yet available.

Author Biographies

Lorena E. Correa, University of Antioquia

Corrosion and Protection Group-CIDEMAT.

Esteban Velilla, University of Antioquia

Research group on Efficient Management of Electrical Energy.

Maryory Gómez, University of Antioquia

Corrosion and Protection Group-CIDEMAT.

Félix Echeverría, University of Antioquia

Corrosion and Protection Group-CIDEMAT.

Alejandro Marín, Departamento de Líneas de Alta Tensión Bogotá

Department of High Voltage Lines.

Juan G. Castaño, University of Antioquia

Corrosion and Protection Group-CIDEMAT.

References

J. LaForest. Transmission line reference book, 345 kV and above. “Electric Power Research Institute EPRI”. Second Edition. Ed. Palo Alto. California. 1982. pp. 350-420.

A. Haddad, D. Warne. Advances in High Voltages Engineering. “IET Power and Energy Series”. First Edition. Ed. The Institution of Engineering and Technology. United Kingdom. 2009. pp. 257-279.

C. Bayliss, B. Hardy. “Transmission and Distribution Electrical Engineering”. Ed. Elsiever. Third Edition. Oxford. 2007. pp. 163-180.

M. Sforzini. “Testing of Polluted Insulators-The Present Situation and Problems of the Future”. The Franklin Institute. Vol. 6. 1972. pp. 437-468. DOI: https://doi.org/10.1016/0016-0032(72)90097-X

G. Muhsin, C. Mehmet. “The Pollution Flashover on High Voltage Insulators”. Electric Power Sistems Research. Vol. 78. 2008. pp. 1914-1921. DOI: https://doi.org/10.1016/j.epsr.2008.03.019

L. Hencker. “Consideraciones en la selección de aisladores bajo condiciones de contaminación atmosférica”. Boletín Técnico GAMMA Corona. Vol. 5. 2005. pp. 1-10.

S. Abdus, G. Hemen, N. Zia. “Determination of equivalent salt deposit density using wind velocity for a contaminated insulator”. Journal of Electrostatics. Vol. 63. 2005. pp. 37-44. DOI: https://doi.org/10.1016/j.elstat.2004.06.004

M. Abdel, A. El-Morshedy, R. Radwan. High-voltage engineering: theory and practice. “Electrical Engineering and Electronics”. Second Edition. Ed. Taylor & Francis. New York. 2000. pp. 350-356.

A. Cano. “Guía para la selección de aisladores bajo condiciones de contaminación”. Boletín Técnico GAMMA Corona. Vol. 36. 2006. pp. 1-12.

F. González. “Elementos de Líneas de Transmisión Aéreos”. Reporte de Investigación. Capítulo 1. 2007. pp. 1-53.

ASTM. “Standard Test Methods for Measuring Adhesion by Tape Test. West Conshohocken”. Pennsylvania. ASTM (Norma: ASTM D 3359-02). 2002. pp. 1-7.

ASTM. “Standard Test Method for Hydrophobic Contamination on Glass by Contact Angle Measurement”. West Conshohocken. Pennsylvania. ASTM (Norma: ASTM C 813). 2009. pp. 1-3.

P. Forbes. “Self-Cleaning Materials”. Scientific American. August 2008, (http://www.sciam.com/article.cfm?id=self-cleaning-materials). Consultado 2009. DOI: https://doi.org/10.1038/scientificamerican0808-88

W. Abdallah, J. Buckley, A. Carnegie, J. Edwards, E. Fordhman, A. Graue. “Fundamentos de la mojabilidad”. Seminario Schlumberger sobre mojabilidad. Oilfield Review. Vol. 19. 2007. pp. 48-67.

D. Menéndez, M. Miguez, A. Gómez. “Determinación del ángulo de contacto de un líquido sobre un sólido mediante una técnica de digitalización de imagen”. Investigación Aplicada Procesos superficiales. 5° Jornada de Desarrollo e innovación. Instituto Nacional de Tecnología Industrial. 2004. pp.1-2.

H. Abdullah, H. Taib, C. Sorell. “Coating methods for self-cleaning thick films of titania”. Advances in Applied Ceramics. Vol. 106. 2007. pp. 105 - 112. DOI: https://doi.org/10.1179/174367607X156061

B. Roland, D. Frank, Q. Jana, O. Marko. “Application of Titanium Dioxide Photo-catalysis to Created Self-Cleaning Building Materials”. Lacer. Vol. 5. 2000. pp. 157-168.

NTC. “Método de ensayo para aisladores de potencia eléctrica”. Norma Técnica Colombiana Electrotécnica. Colombia. NTC (Norma: NTC 1285). 2002. pp. 1-30.

ASTM. “Standard Test Method for Conducting Erosion test by Solid Particle Impingement Using Ga s Jets. West Conshohocken”. PASTM (Norma: ASTM G76). 2007. pp. 1-6.

Published

2013-05-06

How to Cite

Correa, L. E., Velilla, E., Gómez, M., Echeverría, F., Marín, A., & Castaño, J. G. (2013). Performance evaluation of ceramic insulators coated with titanium dioxide films to reduce soiling. Revista Facultad De Ingeniería Universidad De Antioquia, (66), 131–140. https://doi.org/10.17533/udea.redin.15230

Most read articles by the same author(s)

1 2 > >>