Application of Petrov-galerkin method in stabilization solution of advection-diffusionreaction unidimensional problems
DOI:
https://doi.org/10.17533/udea.redin.16686Keywords:
Petrov-Galerkin, advection, diffusion, perturbation functions, unstable solutionsAbstract
This paper examines the Streamline Upwind Petrov Galerkin method as a stabilizing technique for the numerical solution of differential equations of advection-diffusion-reaction; it analizes the method taking into account the non self-adjoint nature of the convective diferential operator and the necessary transformations for the solution stabilization through the elimination of non self-adjoint effect induced by the convective term. Presents six different numerical examples, which include problems of variable coefficients, high convective problems, highly reactive systems and transitional solutions. This method presents an excellent performance of this stabilization technique for all the cases mentioned above, except for the problems with strong reactives terms.
Downloads
References
I. Babuska, F. Ihlenburg, E. Paik, S. Sauter. “A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution”. Computer Methods in Applied Mechanics and Enginnering. Vol. 128. 1995. pp. 325-359. DOI: https://doi.org/10.1016/0045-7825(95)00890-X
R. Smith. “Optimal and near-optimal advectiondiffusion finite-difference schemes iii. Black-Scholes equation”. Proceedings: Mathematical, Physical and Engineering Sciences. Vol. 456. 2000. pp. 1019-1028. DOI: https://doi.org/10.1098/rspa.2000.0548
M. Sanín, G. Montero. “A finite difference model for air pollution simulation”. Advances in Engineering Software. Vol. 38. 2007. pp. 358–365. DOI: https://doi.org/10.1016/j.advengsoft.2006.09.013
L. Ferragut, M. Asensio, S. Monedero. “A numerical method for solving convection–reaction–diffusion multivalued equations in fire spread modelling”. Advances in Engineering Software. Vol. 38. 2007. pp. 366–371. DOI: https://doi.org/10.1016/j.advengsoft.2006.09.007
O. Richter. “Modelling dispersal of populations and genetic information by finite element methods”. Environmental Modelling & Software. Vol. 23. 2008. pp. 206–214. DOI: https://doi.org/10.1016/j.envsoft.2007.06.001
D. Dan, C. Mueller, K. Chen, J. Glazier. “Solving the advection-diffusion equations in biological contexts using the cellular Potts model”. Physical Review. Vol. 72. 2005. pp. 041909. DOI: https://doi.org/10.1103/PhysRevE.72.041909
O. Zienkiewicz, R. Taylor. Finite Element Method. Ed. Butterworth-Heinemann College. Vol. 3. 2000. pp. 5- 150.
M. Stynes. “Steady-state convection-diffusion problems”. Acta Numerica. Vol. 14. 2005. pp. 445- 508. DOI: https://doi.org/10.1017/S0962492904000261
O. Zienkiewicz, R. Gallagher, P. Hood. Newtonian and non-Newtonian viscous impompressible flow. Temperature inducedflows and finite elements solutions. The Mathematics of Finite Elements and Applications. Ed. Academic Press. New York. 1975. pp. 13-63.
I. Christie, D. Griffiths, O. Zienkiewicz. “Finite element methods for second order differential equations with significant first derivatives”. International Journal for Numerical Methods in Engineering. Vol. 10. 1976. pp. 1389-1396. DOI: https://doi.org/10.1002/nme.1620100617
O. Zienkiewicz, J. Heinrich, P. Huyakorn, A. Mitchel. “An upwind finite element scheme for two dimensional convective transport equations”. International Journal for Numerical Methods in Engineering. Vol. 11. 1977. pp. 131-144. DOI: https://doi.org/10.1002/nme.1620110113
T. Hughes, A. Brooks. “A multidimensional upwind scheme with no crosswind diffusion”. Finite Element Method for Convection Dominated Flows (ASME). Vol. 34. 1979. pp. 19-35.
A. Brooks, T. Hughes. “Stream upwind PetrovGalerkin formulations for convection dominated flow with particular emphasis on the incompressible Navier Stokes equations”. Computer Methods in Applied Mechanics and Engineering. Vol. 32. 1982. pp. 199- 259. DOI: https://doi.org/10.1016/0045-7825(82)90071-8
C. Johnson, U. Navert, J. Pitkaranta. “Finite element methods for linear hyperbolic problems”. Computer Methods in Applied Mechanics and Engineering. Vol. 45. 1984. pp. 285-312. DOI: https://doi.org/10.1016/0045-7825(84)90158-0
T. Hughes, L. Franca, M. Balestra. “A new finite element formulation for computational and fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”. Computer Methods in Applied Mechanics and Engineering. Vol. 59. 1986. pp. 85-99. DOI: https://doi.org/10.1016/0045-7825(86)90025-3
T. Hughes, L. Franca, G. Hulbert. “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective diffusive equations”. Computer Methods in Applied Mechanics and Engineering. Vol. 73. 1989. pp. 173- 189. DOI: https://doi.org/10.1016/0045-7825(89)90111-4
L. Franca, S. Frey, T. Hughes. “Stabilized finite element methods: I. Application to advective difusive model”. Computer Methods in Applied Mechanics and Engineering. Vol. 95. 1992. pp. 253-276. DOI: https://doi.org/10.1016/0045-7825(92)90143-8
C. Baiocchi, F. Brezzi, L. Franca. “Virtual bubbles and Galerkin/least-square type methods”. Computer Methods in Applied Mechanics and Engineering. Vol. 105. 1993. pp. 125-141. DOI: https://doi.org/10.1016/0045-7825(93)90119-I
I. Harari, T. Hughes. “Stabilized finite element methods for steady advection-diffusion with production”. Computer Methods in Applied Mechanics and Engineering. Vol. 115. 1994. pp. 165-191. DOI: https://doi.org/10.1016/0045-7825(94)90193-7
A. Russo. “Bubble stabilization of the finite element method for the linearized incompressible Navier-Stokes equation”. Computer Methods in Applied Mechanics and Engineering. Vol. 132. 1996. pp. 335-343. DOI: https://doi.org/10.1016/0045-7825(96)01020-1
R. Codina. “Comparison of some finite element methods for solving the diffusion-convection-reaction equation”. Computer Methods in Applied Mechanics and Engineering. Vol. 156. 1998. pp. 185-210. DOI: https://doi.org/10.1016/S0045-7825(97)00206-5
B. Cockburn, G. Karniadakis, C. Shu. Discontinuos Galerkin Methods, Theory, Computational and Application. Ed. Springer. 2000. pp. 20-80. DOI: https://doi.org/10.1007/978-3-642-59721-3
R. Araya, E. Behrens, R. Rodríguez. “An adaptive stabilized finite element scheme for the advection– reaction–diffusion equation”. Applied Numerical Mathematics. Vol. 54. 2005. pp. 491–503. DOI: https://doi.org/10.1016/j.apnum.2004.09.015
R. Araya, E. Behrens, R. Rodríguez. “Error estimators for advection-reaction-diffusion equations based on the solution of local problems”. Journal of Computational and Applied Mathematics. Vol. 206. 2007. pp. 440- 453. DOI: https://doi.org/10.1016/j.cam.2006.08.039
J. Xin, J. Flaherty. “Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws”. Applied Numerical Mathematics. Vol. 56. 2006. pp. 444-458. DOI: https://doi.org/10.1016/j.apnum.2005.08.001
G. Guymon, V. Scott, L. Herrmann. “A general numerical solution of the two dimensional diffusionconvection equation by the finite element method”. Water Resources Research. Vol. 6. 1970. pp. 1611- 1617. DOI: https://doi.org/10.1029/WR006i006p01611
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.