Aplicación del método Petrov-galerkin como técnica para la estabilización de la solución en problemas unidimensionales de convección-difusión-reacción

Autores/as

  • Diego Alexander Garzón-Alvarado Universidad Nacional de Colombia
  • Carlos Humberto Galeano-Urueña Universidad Nacional de Colombia
  • Carlos Alberto Duque-Daza Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.16686

Palabras clave:

Petrov-Galerkin, advección, difusión, funciones de perturbación, soluciones inestables.

Resumen

El presente artículo estudia el método Streamline Upwind Petrov Galerkin como técnica de estabilización de la solución numérica de las ecuaciones diferenciales de advección-difusión-reacción; se analiza el método a la luz de la naturaleza no auto adjunta del operador diferencial convectivo y de las transformaciones necesarias para la estabilización de la solución por medio de la eliminación del efecto no autoadjunto inducido por el término convectivo. Se desarrollaron seis diversos ejemplos numéricos, los cuales incluyen problemas de coeficientes variables, altamente convectivos, fuertemente reactivos, sistemas de ecuaciones diferenciales y soluciones transitorias. Se encuentra un excelente desempeño de esta técnica de estabilización para todos los casos anteriormente mencionados, exceptuando los problemas con términos reactivos fuertes.

|Resumen
= 174 veces | PDF
= 122 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Citas

I. Babuska, F. Ihlenburg, E. Paik, S. Sauter. “A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution”. Computer Methods in Applied Mechanics and Enginnering. Vol. 128. 1995. pp. 325-359. DOI: https://doi.org/10.1016/0045-7825(95)00890-X

R. Smith. “Optimal and near-optimal advectiondiffusion finite-difference schemes iii. Black-Scholes equation”. Proceedings: Mathematical, Physical and Engineering Sciences. Vol. 456. 2000. pp. 1019-1028. DOI: https://doi.org/10.1098/rspa.2000.0548

M. Sanín, G. Montero. “A finite difference model for air pollution simulation”. Advances in Engineering Software. Vol. 38. 2007. pp. 358–365. DOI: https://doi.org/10.1016/j.advengsoft.2006.09.013

L. Ferragut, M. Asensio, S. Monedero. “A numerical method for solving convection–reaction–diffusion multivalued equations in fire spread modelling”. Advances in Engineering Software. Vol. 38. 2007. pp. 366–371. DOI: https://doi.org/10.1016/j.advengsoft.2006.09.007

O. Richter. “Modelling dispersal of populations and genetic information by finite element methods”. Environmental Modelling & Software. Vol. 23. 2008. pp. 206–214. DOI: https://doi.org/10.1016/j.envsoft.2007.06.001

D. Dan, C. Mueller, K. Chen, J. Glazier. “Solving the advection-diffusion equations in biological contexts using the cellular Potts model”. Physical Review. Vol. 72. 2005. pp. 041909. DOI: https://doi.org/10.1103/PhysRevE.72.041909

O. Zienkiewicz, R. Taylor. Finite Element Method. Ed. Butterworth-Heinemann College. Vol. 3. 2000. pp. 5- 150.

M. Stynes. “Steady-state convection-diffusion problems”. Acta Numerica. Vol. 14. 2005. pp. 445- 508. DOI: https://doi.org/10.1017/S0962492904000261

O. Zienkiewicz, R. Gallagher, P. Hood. Newtonian and non-Newtonian viscous impompressible flow. Temperature inducedflows and finite elements solutions. The Mathematics of Finite Elements and Applications. Ed. Academic Press. New York. 1975. pp. 13-63.

I. Christie, D. Griffiths, O. Zienkiewicz. “Finite element methods for second order differential equations with significant first derivatives”. International Journal for Numerical Methods in Engineering. Vol. 10. 1976. pp. 1389-1396. DOI: https://doi.org/10.1002/nme.1620100617

O. Zienkiewicz, J. Heinrich, P. Huyakorn, A. Mitchel. “An upwind finite element scheme for two dimensional convective transport equations”. International Journal for Numerical Methods in Engineering. Vol. 11. 1977. pp. 131-144. DOI: https://doi.org/10.1002/nme.1620110113

T. Hughes, A. Brooks. “A multidimensional upwind scheme with no crosswind diffusion”. Finite Element Method for Convection Dominated Flows (ASME). Vol. 34. 1979. pp. 19-35.

A. Brooks, T. Hughes. “Stream upwind PetrovGalerkin formulations for convection dominated flow with particular emphasis on the incompressible Navier Stokes equations”. Computer Methods in Applied Mechanics and Engineering. Vol. 32. 1982. pp. 199- 259. DOI: https://doi.org/10.1016/0045-7825(82)90071-8

C. Johnson, U. Navert, J. Pitkaranta. “Finite element methods for linear hyperbolic problems”. Computer Methods in Applied Mechanics and Engineering. Vol. 45. 1984. pp. 285-312. DOI: https://doi.org/10.1016/0045-7825(84)90158-0

T. Hughes, L. Franca, M. Balestra. “A new finite element formulation for computational and fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”. Computer Methods in Applied Mechanics and Engineering. Vol. 59. 1986. pp. 85-99. DOI: https://doi.org/10.1016/0045-7825(86)90025-3

T. Hughes, L. Franca, G. Hulbert. “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective diffusive equations”. Computer Methods in Applied Mechanics and Engineering. Vol. 73. 1989. pp. 173- 189. DOI: https://doi.org/10.1016/0045-7825(89)90111-4

L. Franca, S. Frey, T. Hughes. “Stabilized finite element methods: I. Application to advective difusive model”. Computer Methods in Applied Mechanics and Engineering. Vol. 95. 1992. pp. 253-276. DOI: https://doi.org/10.1016/0045-7825(92)90143-8

C. Baiocchi, F. Brezzi, L. Franca. “Virtual bubbles and Galerkin/least-square type methods”. Computer Methods in Applied Mechanics and Engineering. Vol. 105. 1993. pp. 125-141. DOI: https://doi.org/10.1016/0045-7825(93)90119-I

I. Harari, T. Hughes. “Stabilized finite element methods for steady advection-diffusion with production”. Computer Methods in Applied Mechanics and Engineering. Vol. 115. 1994. pp. 165-191. DOI: https://doi.org/10.1016/0045-7825(94)90193-7

A. Russo. “Bubble stabilization of the finite element method for the linearized incompressible Navier-Stokes equation”. Computer Methods in Applied Mechanics and Engineering. Vol. 132. 1996. pp. 335-343. DOI: https://doi.org/10.1016/0045-7825(96)01020-1

R. Codina. “Comparison of some finite element methods for solving the diffusion-convection-reaction equation”. Computer Methods in Applied Mechanics and Engineering. Vol. 156. 1998. pp. 185-210. DOI: https://doi.org/10.1016/S0045-7825(97)00206-5

B. Cockburn, G. Karniadakis, C. Shu. Discontinuos Galerkin Methods, Theory, Computational and Application. Ed. Springer. 2000. pp. 20-80. DOI: https://doi.org/10.1007/978-3-642-59721-3

R. Araya, E. Behrens, R. Rodríguez. “An adaptive stabilized finite element scheme for the advection– reaction–diffusion equation”. Applied Numerical Mathematics. Vol. 54. 2005. pp. 491–503. DOI: https://doi.org/10.1016/j.apnum.2004.09.015

R. Araya, E. Behrens, R. Rodríguez. “Error estimators for advection-reaction-diffusion equations based on the solution of local problems”. Journal of Computational and Applied Mathematics. Vol. 206. 2007. pp. 440- 453. DOI: https://doi.org/10.1016/j.cam.2006.08.039

J. Xin, J. Flaherty. “Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws”. Applied Numerical Mathematics. Vol. 56. 2006. pp. 444-458. DOI: https://doi.org/10.1016/j.apnum.2005.08.001

G. Guymon, V. Scott, L. Herrmann. “A general numerical solution of the two dimensional diffusionconvection equation by the finite element method”. Water Resources Research. Vol. 6. 1970. pp. 1611- 1617. DOI: https://doi.org/10.1029/WR006i006p01611

Descargas

Publicado

2013-09-18

Cómo citar

Garzón-Alvarado, D. A., Galeano-Urueña, C. H., & Duque-Daza, C. A. (2013). Aplicación del método Petrov-galerkin como técnica para la estabilización de la solución en problemas unidimensionales de convección-difusión-reacción. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 73–90. https://doi.org/10.17533/udea.redin.16686