Flame structure simulation in a methane/air coflow partially premixed burner

Authors

  • Julio Rendón Universidad de Antioquia
  • Francisco Cadavid Universidad de Antioquia
  • Andrés Amell Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.18476

Keywords:

partially premixed flame, combustion simulation, methane/air laminar flames, coflow burner

Abstract

The effect of the equivalence ratio on the partially premixed methane / air laminar flame structure, in a coflow atmospheric burner was simulated. Three equivalence ratios were studied (Φ=1.6, Φ=2.0, Φ=3.5) keeping constant the released energy. The simulation was carried out using FLUENT V 6.2. The radial profiles of temperature and velocity were compared with the experimental data. The influence of the mesh structure in the solution was studied. A criterion to report the height of the flame from the OH profile was also defined. The effect of the equivalence ratio on the flame structure was analyzed from temperature and species contours. The typical structure of a partially premixed flame for the three equivalence ratios was obtained.

|Abstract
= 195 veces | PDF (ESPAÑOL (ESPAÑA))
= 83 veces|

Downloads

Download data is not yet available.

Author Biographies

Julio Rendón, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía

Francisco Cadavid, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía

Andrés Amell, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía

References

A. Amell. “Estimación de las propiedades de combustión de combustibles gaseosos”. 1a ed. Centro de Extensión Académica – CESET, Universidad de Antioquia. 2002. pp. 1-72.

J. P. Gore, N. J. Zhan. “NOx emissions and major species concentrations in partially premixed laminar methane / air co-flow jet flame”. Combust. Flame. Vol. 105. 1996. pp. 414-427. DOI: https://doi.org/10.1016/0010-2180(95)00177-8

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow. “Raman-LIF measurements of temperature, major species OH, and NO in a MethaneAir Bunsen Flame”. Combust. Flame. Vol. 105. 1996. pp. 499-510. DOI: https://doi.org/10.1016/0010-2180(96)00226-X

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Lauendeau, J. P. Gore. “Experimental study of temperature and CH radical location in partially premixed CH4 /Air coflow flames”. Combust. Flame. Vol. 118. 1999. pp. 684-696. DOI: https://doi.org/10.1016/S0010-2180(99)00023-1

B. V. Bennett, C. S. Mcenally, L. D. Pfefferle M. D. Smooke. “Computational and experimental study of axisymmetric coflow partially premixed methane/air flames”. Combust. Flame. Vol. 123. 2000. pp. 522- 546. DOI: https://doi.org/10.1016/S0010-2180(00)00158-9

K. Claramunt, R. Cònsul C. D. Peréz-Segarra, A. Oliva. “Multidimensional mathematical modeling and numerical investigation of co-flow premixed methane/ air laminar flame”. Combust. Flame. Vol. 137. 2004. pp. 444-457. DOI: https://doi.org/10.1016/S0010-2180(04)00072-0

X. Zhou, G. Brenner, T. Weber, F. Durst. “Finite rate chemistry in modeling of two-dimensional jet premixed CH4 /air flame”. Inter. J. Heat Mass Transfer. Vol. 42. 1999. pp. 1757-1773. DOI: https://doi.org/10.1016/S0017-9310(98)00284-1

C. S. Mcenally L. D. Pfefferle, “Experimental study of nonfuel hydrocarbon concentrations in coflowing partially premixed methane/air flames”. Combust. Flame Vol. 118. 1999. pp. 619-632. DOI: https://doi.org/10.1016/S0010-2180(99)00017-6

M. D. Smooke, C. S. Mcenally, L. D. Pfefferle, R. J. Hall, M. B. Colket. “Computational and experimental study of soot formation in a coflow, laminar diffusion flame”. Combust. Flame Vol. 117. 1999. pp. 117-139. DOI: https://doi.org/10.1016/S0010-2180(98)00096-0

I. Glassman. Combustion. 3a ed. Academic Press. New York. 1996. pp. 107-156.

K. K. Kuo. Principles of Combustion. 1a ed. Jhon Wiley & Sons. New York 1986. pp. 285-328.

Using the Solver. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 26. pp. 1-141.

PREMIX User guide. Sandia Report SAND85-8240. Sandia National Laboratories. Livermore. CA, 1985. pp. 1-87.

Modeling species transport and finite rate chemistry. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 14. pp: 1-64

The Composition PDF Transport Model. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 18. pp. 1- 20

C. P. Chou, J. Y. Chen, C. G. Yam, K. D. Marx. “Numerical modeling of NO formation in laminar Bunsen flames-A flamelet approach”. Combust. Flame. Vol. 114. 1998. pp. 420-435. DOI: https://doi.org/10.1016/S0010-2180(97)00317-9

B. V. Bennett, M. D. Smooke. “Local rectangular refinement with application to axisymmetric laminar flame”. Combust. Theo. Model. Vol. 2. 1998. pp. 221-258. DOI: https://doi.org/10.1088/1364-7830/2/3/001

A. Feugier, F. Bouc, L. Mauss, G. Monnot. Principles of turbulent fired heat. 1ra Ed., Éditions Technip, Publications de L’institut Francaise du Petrole. France. 1985. pp. 48-75

S. R. Turns. An introduction to combustion, Concepts and Applications. 2a ed. McGraw Hill, Singapur. 2000. pp. 253-304.

G. P. Smith, D. M. Golden, M. Frenklanch, N. W. Moriarty, B. Eiteneer, M. Goldemberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski and Z. Qin, G. Mech. http://www.me.berkeley.edu/gri_mech/. Consultada Mayo 25 de 2006.

H. B. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff. On the adequacy of certain experimental observables and measurements of flame burning rate. Combust. Flame Vol. 113. 1998 pp, 312-332. DOI: https://doi.org/10.1016/S0010-2180(97)00209-5

Published

2014-02-13

How to Cite

Rendón, J., Cadavid, F., & Amell, A. (2014). Flame structure simulation in a methane/air coflow partially premixed burner. Revista Facultad De Ingeniería Universidad De Antioquia, (44), 61–74. https://doi.org/10.17533/udea.redin.18476

Most read articles by the same author(s)