Flame structure simulation in a methane/air coflow partially premixed burner
DOI:
https://doi.org/10.17533/udea.redin.18476Keywords:
partially premixed flame, combustion simulation, methane/air laminar flames, coflow burnerAbstract
The effect of the equivalence ratio on the partially premixed methane / air laminar flame structure, in a coflow atmospheric burner was simulated. Three equivalence ratios were studied (Φ=1.6, Φ=2.0, Φ=3.5) keeping constant the released energy. The simulation was carried out using FLUENT V 6.2. The radial profiles of temperature and velocity were compared with the experimental data. The influence of the mesh structure in the solution was studied. A criterion to report the height of the flame from the OH profile was also defined. The effect of the equivalence ratio on the flame structure was analyzed from temperature and species contours. The typical structure of a partially premixed flame for the three equivalence ratios was obtained.
Downloads
References
A. Amell. “Estimación de las propiedades de combustión de combustibles gaseosos”. 1a ed. Centro de Extensión Académica – CESET, Universidad de Antioquia. 2002. pp. 1-72.
J. P. Gore, N. J. Zhan. “NOx emissions and major species concentrations in partially premixed laminar methane / air co-flow jet flame”. Combust. Flame. Vol. 105. 1996. pp. 414-427. DOI: https://doi.org/10.1016/0010-2180(95)00177-8
Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow. “Raman-LIF measurements of temperature, major species OH, and NO in a MethaneAir Bunsen Flame”. Combust. Flame. Vol. 105. 1996. pp. 499-510. DOI: https://doi.org/10.1016/0010-2180(96)00226-X
L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Lauendeau, J. P. Gore. “Experimental study of temperature and CH radical location in partially premixed CH4 /Air coflow flames”. Combust. Flame. Vol. 118. 1999. pp. 684-696. DOI: https://doi.org/10.1016/S0010-2180(99)00023-1
B. V. Bennett, C. S. Mcenally, L. D. Pfefferle M. D. Smooke. “Computational and experimental study of axisymmetric coflow partially premixed methane/air flames”. Combust. Flame. Vol. 123. 2000. pp. 522- 546. DOI: https://doi.org/10.1016/S0010-2180(00)00158-9
K. Claramunt, R. Cònsul C. D. Peréz-Segarra, A. Oliva. “Multidimensional mathematical modeling and numerical investigation of co-flow premixed methane/ air laminar flame”. Combust. Flame. Vol. 137. 2004. pp. 444-457. DOI: https://doi.org/10.1016/S0010-2180(04)00072-0
X. Zhou, G. Brenner, T. Weber, F. Durst. “Finite rate chemistry in modeling of two-dimensional jet premixed CH4 /air flame”. Inter. J. Heat Mass Transfer. Vol. 42. 1999. pp. 1757-1773. DOI: https://doi.org/10.1016/S0017-9310(98)00284-1
C. S. Mcenally L. D. Pfefferle, “Experimental study of nonfuel hydrocarbon concentrations in coflowing partially premixed methane/air flames”. Combust. Flame Vol. 118. 1999. pp. 619-632. DOI: https://doi.org/10.1016/S0010-2180(99)00017-6
M. D. Smooke, C. S. Mcenally, L. D. Pfefferle, R. J. Hall, M. B. Colket. “Computational and experimental study of soot formation in a coflow, laminar diffusion flame”. Combust. Flame Vol. 117. 1999. pp. 117-139. DOI: https://doi.org/10.1016/S0010-2180(98)00096-0
I. Glassman. Combustion. 3a ed. Academic Press. New York. 1996. pp. 107-156.
K. K. Kuo. Principles of Combustion. 1a ed. Jhon Wiley & Sons. New York 1986. pp. 285-328.
Using the Solver. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 26. pp. 1-141.
PREMIX User guide. Sandia Report SAND85-8240. Sandia National Laboratories. Livermore. CA, 1985. pp. 1-87.
Modeling species transport and finite rate chemistry. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 14. pp: 1-64
The Composition PDF Transport Model. Fluent User guide V. 6.2. FLUENT INC 2005, Capítulo 18. pp. 1- 20
C. P. Chou, J. Y. Chen, C. G. Yam, K. D. Marx. “Numerical modeling of NO formation in laminar Bunsen flames-A flamelet approach”. Combust. Flame. Vol. 114. 1998. pp. 420-435. DOI: https://doi.org/10.1016/S0010-2180(97)00317-9
B. V. Bennett, M. D. Smooke. “Local rectangular refinement with application to axisymmetric laminar flame”. Combust. Theo. Model. Vol. 2. 1998. pp. 221-258. DOI: https://doi.org/10.1088/1364-7830/2/3/001
A. Feugier, F. Bouc, L. Mauss, G. Monnot. Principles of turbulent fired heat. 1ra Ed., Éditions Technip, Publications de L’institut Francaise du Petrole. France. 1985. pp. 48-75
S. R. Turns. An introduction to combustion, Concepts and Applications. 2a ed. McGraw Hill, Singapur. 2000. pp. 253-304.
G. P. Smith, D. M. Golden, M. Frenklanch, N. W. Moriarty, B. Eiteneer, M. Goldemberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski and Z. Qin, G. Mech. http://www.me.berkeley.edu/gri_mech/. Consultada Mayo 25 de 2006.
H. B. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff. On the adequacy of certain experimental observables and measurements of flame burning rate. Combust. Flame Vol. 113. 1998 pp, 312-332. DOI: https://doi.org/10.1016/S0010-2180(97)00209-5
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.