Design of a model system for the study of corrosion of pipe material and its contribution in deterioration of drinking water quality
DOI:
https://doi.org/10.17533/udea.redin.18762Keywords:
model distribution system, drinking water, pipe corrosion, biofilmAbstract
Distribution systems can affect drinking water quality because pipe conditions and system operation. Some parameters like residual chlorine, pH, color and turbidity can be modified during the distribution, because pipe material can show deterioration in these systems by the water corrosivity. Several studies about this topic had used both real system and laboratory equipment for performing of tests. The most used apparatus nowadays is the model distribution system; it has several advantages like flexibility and easiness for design. A revision in journals is used for defining the design characteristics of model distribution system. It will be used for studying the interaction between the water and the pipe wall. Metallic materials used in secondary distribution system will be used in this study with the purpose of determining the attack to the inner surface of pipes and the causes of deposits formed on them; such as identifying the effects of this interaction in water quality.
Downloads
References
M. J. Lehtola, I. T. Miettinen, M. M. Keinänen, T. K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen. P. J. Martikainen. “Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes”. Water research. Vol. 38. 2004. pp. 3769-3779. DOI: https://doi.org/10.1016/j.watres.2004.06.024
N. Boulay, M. Edwards. “Role of temperature, chlorine, and organic matter in copper corrosion byproduct release in soft water”. Water research. Vol. 35. 2001. pp. 683-690. DOI: https://doi.org/10.1016/S0043-1354(00)00320-1
S. Takasaki, Y. Yamada. “Effects of temperature and aggresive anions on corrosion of carbon steel in potable water”. Corrosion Science. Vol.49. 2007. pp. 240-247. DOI: https://doi.org/10.1016/j.corsci.2006.05.035
Z. Tang, S. Hong, W. Xiao, J. Taylor. “Impacts of blending ground, surface, and saline waters on lead release in drinking water distribution systems”. Water research. Vol. 40. 2006. pp. 943-950. DOI: https://doi.org/10.1016/j.watres.2005.12.028
M. Momba, R. Kfir, S. N. Venter, T.E. Cloete. “An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality”. Water S.A. Vol. 26. 2000. pp. 59-66.
D. Kooij, H. R Veenendaal, C. Baars-Lorist, D. W. Klift, Y. C. Drost. “Biofilm formation on surfaces of glass and teflon exposed to treated water”. Water research. Vol. 29. 1995. pp. 1655-1662. DOI: https://doi.org/10.1016/0043-1354(94)00333-3
E. Torvinen, S. Suomalainen, M. J. Lehtola, I. T. Miettinen, O. Zacheus, L. Paulin, M. L. Katila, P. J. Martikainen. “Mycobacteria in water and loose deposits of drinking water distribucion systems in Finland”. Applied and Environmental Microbiology. Vol. 70. 2004. pp. 1973-1981. DOI: https://doi.org/10.1128/AEM.70.4.1973-1981.2004
T. Schwartz, S. Hoffmann, U. Obst. “Formation and bacterial composition of young, natural biofilmsm obtained from public bank-filtered drinking water systems”. Water research. Vol. 32. 1998. pp. 2787-2797. DOI: https://doi.org/10.1016/S0043-1354(98)00026-8
J. C. Nickel, I. Ruseska, J. B. Wright, J. W. Costerton. “Tobramycin Resistance of Pseudomonas aeruginosa Cells Growing as a Biofilm on Urinary Catheter Material”. Antimicrobial agents and chemotherapy. Vol. 27. 1985. pp. 619-624. DOI: https://doi.org/10.1128/AAC.27.4.619
J. W. Costerton, E. S. Lashen. “Influence of biofilm on efficacy of biocides on corrosion-causing bacteria”. Material Performance. Vol. 23. 1984. pp. 13-17.
M. N. B. Momba, N. Makala. “Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems”. Water S.A. Vol. 30. 2004. pp. 175-182. DOI: https://doi.org/10.4314/wsa.v30i2.5061
M. N. B. Momba, N. Makala. “Combining chlorination and chloramination processes for the inhibition of biofilm formation in drinking surface water system models”. Journal of Applied Microbiology. Vol. 92. 2002. pp. 641-648. DOI: https://doi.org/10.1046/j.1365-2672.2002.01556.x
G. A. Gagnon, J. L. Rand, K. C. O´Leary, A. C. Rygel, C. Chauret, R. C. Andrews. “Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms”. Water Research. Vol. 39. 2005. pp. 1809-1817. DOI: https://doi.org/10.1016/j.watres.2005.02.004
G. A. Gagnon, P. M. Huck. “Removal of easily biodegradable organic compounds by drinking water biofilms: analysis of kinetics and mass transfer”. Water Research. Vol. 35. 2001. pp. 2554-2564. DOI: https://doi.org/10.1016/S0043-1354(00)00540-6
C. Volk, E. Dundore, J. Schiermann, M. Lechevallier. “Practical evaluation of iron corrosion control in a drinking water distribution system”. Water Research.Vol. 34. 2000. pp. 1967-1974. DOI: https://doi.org/10.1016/S0043-1354(99)00342-5
S. Ndiongue, P. M. Huck, R. M. Slawson. “Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system.” Water Research. Vol. 39. 2005. pp. 953-964. DOI: https://doi.org/10.1016/j.watres.2004.12.019
R. Boe-Hansen. “Microbial growth in drinking water distribution systems”. Ph.D. Thesis. Environment & Resources DTU, Technical University of Denmark. 2001. http://www.er.dtu.dk/publications/fulltext/2001/MR2001-075.pdf Consultada el 4 de agosto de 2006.
J. D. Eisnor, G. A. Gagnon. “A framework for the implementation and design of pilot-scale distribution systems”. Journal of Water Supply: Research and Technology—AQUA. Vol. 52. 2003. pp. 501-519. DOI: https://doi.org/10.2166/aqua.2003.0045
S. A. Imran, J. D. Dietz, G. Mutoti, J. S. Taylor, A. A. Randall. “Modified Larsons Ratio Incorporating Temperature, Water Age, and Electroneutrality Effects on Red Water Release”. Journal of Environmental Engineering. Vol. 131. 2005. pp. 1514-1520. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1514)
Z. Tang, S. Hong, W. Xiao, J. Taylor. “Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system”. Corrosion Science. Vol. 48. 2006. pp. 322-342. DOI: https://doi.org/10.1016/j.corsci.2005.02.005
M. J. Lehtola, I. T. Miettinen, T. Lampola, A. Hirvonen, T. Vartiainen, P. J. Martikainen. “Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems”. Water Research. Vol. 39. 2005. pp. 1962-1971. DOI: https://doi.org/10.1016/j.watres.2005.03.009
P. Sarin, V. L. Snoeyink, J. Bebee, K. K. Jim, M. A. Beckett, W. M. Kriven, J. A. Clement. “Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen”. Water Research. Vol. 38. 2004. pp. 1259-1269. DOI: https://doi.org/10.1016/j.watres.2003.11.022
J. D. Eisnor, G. A. Gagnon. “Impact of secondary disinfection on corrosion in a model water distribution system”. Journal of Water Supply: Research and Technology—AQUA. Vol. 53. 2004. pp. 441-452. DOI: https://doi.org/10.2166/aqua.2004.0035
L. A. Rossman. “The effect of advanced treatment on chlorine decay in metallic pipes”. Water Research. Vol. 40. 2006. pp. 2493–2502. DOI: https://doi.org/10.1016/j.watres.2006.04.046
T. H. Merkel, H. J. Groß, W. Werner, T. Dahlke, S. Reicherter, G. Beuchle, S. H. Eberle. “Copper corrosion by-product release in long-term stagnation experiments”. Water Research. Vol. 36. 2002. pp. 1547-1555. DOI: https://doi.org/10.1016/S0043-1354(01)00366-9
V. Lund, K. Osmerod. “The influence of disinfection processes on biofilm formation in water distribution systems”. Water Research. Vol. 29. 1995. pp. 1013– 1021. DOI: https://doi.org/10.1016/0043-1354(94)00280-K
S. L. Percival, J. S. Knapp, R. Edyvean, D. S.Wales. “Biofilm Development on Stainless Steel in Mains Water”. Water Research. Vol. 32. 1998. pp. 243-253. DOI: https://doi.org/10.1016/S0043-1354(97)00132-2
M. W. LeChevallier, C. D. Lowry, R. G. Lee. “Disinfecting biofilms in a model distribution system”. Journal AWWA.ssoc. Vol. 82. 1990. pp. 87–99. DOI: https://doi.org/10.1002/j.1551-8833.1990.tb06996.x
S. A. Imran, J. D. Dietz, G. Mutoti, J. S. Taylor, A. A. Randall, C. D. Cooper. “Red Water Release in Drinking Water Distribution Systems”. Journal AWWA. Vol. 97. 2005. pp. 93-100. DOI: https://doi.org/10.1002/j.1551-8833.2005.tb07475.x
M. J. Lehtola, M. Laxander, I. T. Miettinen, A. Hirvonen, T. Vartiainen, P. J. Martikainen. “The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes”. Water Research. Vol. 40. 2006. pp. 2151-2160. DOI: https://doi.org/10.1016/j.watres.2006.04.010
C. D. Norton, M. W. Lechevallier. “A Pilot Study of Bacteriological Population Changes through Potable Water Treatment and Distribution”. Applied and Environmental Microbiology. Vol. 66. 2000. pp. 268-276. DOI: https://doi.org/10.1128/AEM.66.1.268-276.2000
B. Holden, M. Greetham, B. T. Croll, J. Scutt. “The Effect of changing inter process and final disinfection reagents on corrosion and biofilm growth in distribution pipes”. Water Science and Technology. Vol. 32. 1995. pp. 213-220. DOI: https://doi.org/10.2166/wst.1995.0301
P. Sarin, V. L. Snoeyink, J. Bebee, W. M. Kriven, J. A. Clement. “Physico-chemical characteristics of corrosion scales in old iron pipes”. Water Research. Vol. 35. 2001. pp. 2961-2969. DOI: https://doi.org/10.1016/S0043-1354(00)00591-1
ANSI/AWWA C651-92. “Standard for desinfectingwater mains”. AWWA. 1992. pp. 8-13.
Ministerio de Desarrollo Económico. República de Colombia. Reglamento Técnico del sector de Agua Potable y Saneamiento Básico RAS-2000. Sección II, Titulo B, Sistemas de Acueducto. http://www.minambiente.gov.co/viceministerios/ambiente/dir_agua_potable_saneam_basico/direccion/TituloBOct2.pdf Consultada el 18 de enero de 2007.
Designation ASTM D2688. “Standard Test Methods for Corrosivity of Water in the Absence of Heat Transfer (Weight Loss Methods)”. ASTM International. 2005. pp. 1-7.
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.