Effect of aeration on the Tafelian behavior of the corrosion of carbon steel in acid sulfate medium

Authors

DOI:

https://doi.org/10.17533/udea.redin.n83a05

Keywords:

carbon steel, Tafel’s law, corrosion, sulfate, oxygen diffusion

Abstract

This  study  presents  a  corrosion  analysis  of  carbon  steel  by  electrochemical  polarization tests on a rotating disk electrode at several aeration and hydrodynamic conditions in  solution  0.2  mol  L-1  K2SO4  at  pH  3.  The  reactions  involved  in  the  dissolution  of  the  steel  are  analyzed  by  studying  the  Tafel  regions  of  the  polarization  curves,  confirming  that  the  dissolved oxygen plays a predominant role in the corrosion of the metal. The corrosion rate was  35  times  higher  in  natural  aeration  conditions  than  in  the  deaerated  medium.  Under  natural aeration conditions, it is not possible to make a simple analysis of the corrosion of the steel from the extrapolation of the Tafel slopes since such slopes were not well defined due  to  the  formation  of  rust  in  the  anodic  region  and  the  influence  of  mass  transport  in  the  cathodic  region.  At  cathodic  polarization  potentials  and  with  natural  aeration,  there  is  an  increase  in  polarization  currents  with  respect  to  the  deaerated  system  and  the  oxygen  reduction  reaction  is  controlled  by  the  mass  transport.  Under  deaerated  conditions  and  at  intermediate polarization potentials, there is a change in the dissolution mechanism of the steel.  At  high  overpotential,  the  rate  of  dissolution  of  the  steel  tends  to  be  equal  in  both  systems,  aerated  and  deaerated  because  the  corrosion  of  the  metal  is  controlled  by  the  diffusion of species through corrosion products film.

|Abstract
= 414 veces | PDF
= 224 veces|

Downloads

Download data is not yet available.

Author Biographies

Ferley Alejandro Vásquez-Arroyave, University of Antioquia

Center for Research, Innovation and Development of Materials (CIDEMAT), Faculty of Engineering.

José Adrián Tamayo-Sepúlveda, University of Antioquia

Center for Research, Innovation and Development of Materials (CIDEMAT), Faculty of Engineering.

Jorge Andrés Calderón-Gutiérrez, University of Antioquia

Center for Research, Innovation and Development of Materials (CIDEMAT), Faculty of Engineering. Professor.

References

D. de la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, “Long-term atmospheric corrosion of mild steel,” Corros. Sci., vol. 53, no. 2, pp. 604–617, 2011.

B. Surnam, C. Chui, H. Xiao, and H. Liang, “Investigating atmospheric corrosion behavior of carbon steel in coastal regions of Mauritius using Raman Spectroscopy,” Matéria, vol. 21, no. 1, pp. 157–168, 2016.

M. Sfaira, A. Srhiri, M. Keddam, and H. Takenouti, “Corrosion of a mild steel in agricultural irrigation waters in relation to partially blocked surface,” Electrochim. Acta, vol. 44, no. 24, pp. 4395–4402, 1999.

G. A. Zhang and Y. F. Cheng, “Electrochemical corrosion of X65 pipe steel in oil/water emulsion,” Corros. Sci., vol. 51, no. 4, pp. 901–907, 2009.

N. Dai et al., “Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment,” Corros. Sci., vol. 99, pp. 295–303, 2015.

Q. Xu, K. Gao, Y. Wang, and X. Pang, “Characterization of corrosion products formed on different surfaces of steel exposed to simulated groundwater solution,” Appl. Surf. Sci., vol. 345, pp. 10–17, 2015.

M. Keddam, O. Rosa, and H. Takenouti, “Reaction Model for Iron Dissolution Studied by Electrode Impedance II. Determination of Reaction Model” J. Electrochem. Soc., vol. 128, no. 2, pp. 266–274, 1981.

S. Treimer, A. Tang, and D. C. Johnson, “A Consideration of the Application of Koutecký-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk Electrodes,” Electroanalysis, vol. 14, no. 3, pp. 165–171, 2002.

M. Barbalat et al., “Estimation of residual corrosion rates of steel under cathodic protection in soils via voltammetry,” Corros. Sci., vol. 73, pp. 222–229, 2013.

M. Barbalat et al., “Electrochemical study of the corrosion rate of carbon steel in soil : Evolution with time and determination of residual corrosion rates under cathodic protection,” Corros. Sci., vol. 55, pp. 246–253, 2012.

E. E. Oguzie, Y. Li, and F. H. Wang, “Effect of 2-amino-3-mercaptopropanoic acid (cysteine) on the corrosion behaviour of low carbon steel in sulphuric acid,” Electrochim. Acta, vol. 53, no. 2, pp. 909–914, 2007.

K. J. Vetter and F. Gorn, “Kinetics of Layer Formation and Corrosion Processes Of Passive Iron in Acid Solutions,” Electrochim. Acta, vol. 18, no. 4, pp. 321–326, 1973.

Y. A. Elewady and W. J. Lorenz, “Inhibition of iron corrosion in aerated solutions containing sulphate,” Mater. Chem., vol. 6, no. 3, pp. 223–231, 1981.

E. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method,” Corros. Sci., vol. 47, no. 12, pp. 3202–3215, 2005.

M. Stern and A. L. Geary, “Electrochemical Polarization. I. A Theoretical Analysis of the Shape of Polarization Curves,” J. Electrochem. Soc., vol. 104, pp. 56–63, 1957.

A. C. Makrides, “Dissolution of Iron in Sulfuric Acid and Ferric Sulfate Solutions,” Journal of the Electrochemical Society, vol. 107, no. 11, pp. 869-877, 1960.

S. Barnartt. “Corrosion Kinetics of Iron in Acid Sulfate Solutions. Effects of Impurities in the Metal,” Journal of the Electrochemical Society, vol. 119, 812-817, 1972.

M. Keddam, O. Rosa, and H. Takenouti, “Reaction Model for Iron Dissolution Studied by Electrode Impedance I. Experimental Results and Reaction Model,” J. Electrochem. Soc., vol. 128, no. 2, pp. 257–266, 1981.

S. Barnartt, “Tafel slopes for iron corrosion in acidic solutions,” Corrosion, vol. 27, pp. 467–450, 1971.

A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and Applications, 2nd ed. New York, USA: Wiley, 2001.

D. R. Crow, Principles and Applications of Electrochemistry, 2nd ed. London, UK: Nelson Thornes Ltd, 1979.

H. J. Cleary and N. D. Greene, “Electrochemical Properties of Fe And Steel,” Corros. Sci., vol. 9, no. 1, pp. 3-13, 1969.

O. E. Barcia and O. Rosa, “The Role Of Chloride And Sulphate Anions In The Iron Dissolution Mechanism Studied By Impedance Measurements,” Electrochim. Acta, vol. 35, pp. 1003–1009, 1990.

A. Periasamy, S. Muruganand, and M. Palaniswamy, “Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals,” Rasayan J. Chem., vol. 2, no. 4, pp. 981–989, 2009.

X. Zhang et al., “In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42−,” Eng. Fail. Anal., vol. 18, no. 8, pp. 1981–1989, 2011.

K. Xiao, C. Dong, X. Li, and F. Wang, “Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel,” J. Iron Steel Res. Int., vol. 15, no. 5, pp. 42–48, 2008.

D. H. Angell and T. Dickinson, “The kinetics of the ferrous/ferric and ferro/ferricyanide reactions at platinum and gold electrodes,” J. Electroanal. Chem. Interfacial Electrochem., vol. 35, no. 1, pp. 55–72, 1972.

P. Han and D. M. Bartels, “Temperature Dependence of Oxygen Diffusion in H2O and D2O,” J. Phys. Chem., vol. 100, no. 13, pp. 5597–5602, 1996.

H. J. Flitt and D. P. Schweinsberg, “Evaluation of corrosion rate from polarisation curves not exhibiting a Tafel region,” Corros. Sci., vol. 47, no. 12, pp. 3034–3052, 2005.

L. Bammou et al., “Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts,” J. Assoc. Arab Univ. Basic Appl. Sci., vol. 16, pp. 83–90, 2014.

B. Qian, J. Wang, M. Zheng, and B. Hou, “Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4,” Corros. Sci., vol. 75, pp. 184–192, 2013.

D. Daoud, T. Douadi, S. Issaadi, and S. Chafaa, “Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions,” Corros. Sci., vol. 79, pp. 50–58, 2014.

M. Langrenée, B. Bernari, M. Bouanis, M. Traisnel, and F. Bentiss, “Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media,” Corros. Sci., vol. 44, pp. 573–588, 2002.

Downloads

Published

2017-06-26

How to Cite

Vásquez-Arroyave, F. A., Tamayo-Sepúlveda, J. A., & Calderón-Gutiérrez, J. A. (2017). Effect of aeration on the Tafelian behavior of the corrosion of carbon steel in acid sulfate medium. Revista Facultad De Ingeniería Universidad De Antioquia, (83), 36–42. https://doi.org/10.17533/udea.redin.n83a05

Most read articles by the same author(s)