Small-signal stability analysis of dc microgrids considering electric vehicles
DOI:
https://doi.org/10.17533/udea.redin.n89a07Keywords:
dc microgrids, small signal stability, sensitivity analysis, Newton-Raphson methodAbstract
This paper presents a generalized model for small signal stability in dc microgrids considering electric vehicles. The proposed model considers four type of terminals, namely: constant power, constant voltage, constant current and constant impedance. A Newton-Raphson methodology is used to calculate the operation point of the microgrid and a sensitivity analysis is also presented. Some general features of the dc microgrid based on the intrinsic characteristics of the model are presented. Simulation results on different type of microgrids show the proposed small signal model is accurate compared to dynamical simulations.
Downloads
References
J. A. Peças, A. Guimarães, and C. C. Leal, “A view of microgrids,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 2, no. 1, pp. 86– 103, Jan. 2013.
J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, Jan. 2011.
T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “Dc microgrids—part ii: A review of power architectures, applications, and standardization issues,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528–3549, May. 2016.
A. Kwasinski, “Quantitative evaluation of dc microgrids availability: Effects of system architecture and converter topology design choices,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 835–851, Mar. 2011.
B. T. Patterson, “Dc, come home: Dc microgrids and the birth of the ”enernet”,” IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 60–69, Nov. 2012.
D. Chen, L. Xu, and L. Yao, “Dc voltage variation based autonomous control of dc microgrids,” IEEE Transactions on Power Delivery, vol. 28, no. 2, pp. 637–648, Apr. 2013.
S. Anand and B. G. Fernandes, “Reduced-order model and stability analysis of low-voltage dc microgrid,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5040–5049, Nov. 2013.
L. Herrera and J. Wang, “Stability analysis and controller design of dc microgrids with constant power loads,” in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2015, pp. 691–696.
N. Bottrell, M. Prodanovic, and T. C. Green, “Dynamic stability of a microgrid with an active load,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5107–5119, Nov. 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.