Properties of modified concrete with crumb rubber: effect of the incorporation of hollow glass microspheres

Authors

  • Juan Pablo Valencia-Villegas Cooperative University of Colombia
  • Ana María González-Mesa Cooperative University of Colombia
  • Oscar Felipe Arbeláez-Pérez Cooperative University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.20200473

Keywords:

modified concrete, hollow glass microspheres, crumb rubber, synergetic effect

Abstract

In this study, the effect of incorporating hollow glass microspheres (HGM) on the  mechanical properties of modified concrete with CR (crumb rubber) was evaluated. Different concrete samples replacing  15% of fine aggregates (total weight of CR + HGM = 15%) were prepared. It was found that the increase in the microsphere content was directly proportional to the slump, compressive strength, and the modulus of elasticity. The increase in the microsphere content was inversely proportional to density. Additionally, we found that in the modified concrete, the width, height and the number of cracks increased as the HGM content increases. The combined sample HGM12.5-CR2.5 (the one with the highest content of microspheres) resulted in concrete with the highest compressive strength of 19.1 MPa, which is 243% stronger than the concrete with only crumb rubber (9.2 MPa). From the XRD results, we were able to detect the presence of different phases formed by hydration during the process of preparing concrete mixtures. The micrographs allowed identifying the fracture in the microspheres during the preparation of the concrete mixtures when they came into contact with the aggregates. The addition of hollow glass microspheres to the mixtures prepared from crumb rubber improved their mechanical properties, and this makes it a potential system that can replace the traditional materials in the production of concrete.

|Abstract
= 1333 veces | PDF
= 890 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan Pablo Valencia-Villegas, Cooperative University of Colombia

TERMOMEC, Faculty of Engineering.

Ana María González-Mesa, Cooperative University of Colombia

TERMOMEC, Faculty of Engineering.

Oscar Felipe Arbeláez-Pérez, Cooperative University of Colombia

TERMOMEC, Faculty of Engineering.

References

V. Tam, M. Soomro, and A. C. Jorge, “A review of recycled aggregate in concrete applications (2000–2017),” Constr. Build. Mater, vol. 172, May 30 2018. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2018.03.240

E. R. Teixeira and A. Camões and F. G. Branco, “Valorisation of wood fly ash on concrete,” Resour. Conserv. Recycle., vol. 145, June 2019. [Online]. Available: https://doi.org/10.1016/j.resconrec.2019.02.028

K. Hu, Y. Chen, F. Naz, C. Zeng, and S. Cao, “Separation studies of concrete and brick from construction and demolition waste,” Resour. Conserv. Recycle., vol. 85, February 15 2019. [Online]. Available: https://doi.org/10.1016/j.wasman.2019.01.007

T. Castaño, S. Linsel, A. Alujas, R. Orozco, and J. F. Martirena, “Influence of very fine fraction of mixed recycled aggregates on the mechanical properties and durability of mortars and concretes,”

Revista Facultad de Ingeniería Universidad de Antioquia, no. 81, September 2016. [Online]. Available: http://dx.doi.org/10.17533/udea.redin.n81a08

E. Pavón, I. Martínez, and M. Etxeberria, “The production of construction and demolition waste material and the use of recycled aggregates in Havana, Cuba,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 71, pp. 167–178, April 2014.

L. F. Molina and M. F. Garzón, “Propiedades de concretos y morteros modificados con nanomateriales: Estado del arte,” Arquetipo, no. 14, pp. 81–98, 2017.

N. Camargo and C. Higuera, “Concreto hidraulico modificado con silice obtenida de la cascarilla de arroz,” Cienc. e Ing. Neogranadina, vol. 27, no. 1, 2017. [Online]. Available: https://doi.org/10.18359/rcin.1907

P. Murthi, P. Awoyera, P. Selvara, D. Dharsana, and R. Gobinath, “Using silica mineral waste as aggregate in a green high strength concrete: Workability, strength, failure mode, and morphology assessment,” Aust. J. Civ. Eng., vol. 16, no. 2, 2018. [Online]. Available: https://doi.org/10.1080/14488353.2018.1472539

P. O. Awoyera, J. O. Akinmusuru, and J. M. Ndambuki, “Green concrete production with ceramic wastes and laterite,” Constr. Build. Mater, vol. 117, August 1 2016. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2016.04.108

P. O. Awoyera, A. R. Dawson, N. H. Thom, and J. O. Akinmusuru, “Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis,” Constr. Build. Mater., vol. 148,

September 1 2017. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2017.05.031

T. Sathanandam, P. O. Awoyera, V. Vijayan, and K. Sathishkumar, “Low carbon building: Experimental insight on the use of fly ash and glass fiber for making geopolymer concrete,” Sustain. Environ. Res., vol. 27, no. 3, May 2017. [Online]. Available: https://doi.org/10.1016/j.serj.2017.03.005

T. Alexandru, B. Marinela, D. Laura, and B. Irina, “Mechanical and Environmental Performances of Concrete Using Recycled Materials,” Procedia Manuf., vol. 32, 2019. [Online]. Available: https://doi.org/10.1016/j.promfg.2019.02.211

K. Rashid, A. Yazdanbakhsh, and M. U. Rehman, “Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material,” J. Clean. Prod., vol. 224, July 1 2019. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.03.197

A. R. Khaloo, M. Dehestani, and P. Rahmatabadi, “Mechanical properties of concrete containing a high volume of tire–rubber particles,” Waste Manag., vol. 28, no. 12, December 2008. [Online]. Available: https://doi.org/10.1016/j.wasman.2008.01.015

H. A. Torres, “Valoración de propiedades mecánicas y de durabilidad de concreto adicionado con residuos de llantas de caucho,” M.S. thesis, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia, 2014.

S. Shahidan, E. Aminuddin, K. Mohd, N. I. Raihan, and N. A. Saiful, “Potential of hollow glass microsphere as cement replacement for lightweight foam concrete on thermal insulation performance,” in International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016), Wuhan, China, 2017, p. 9.

A. L. Brooks, H. Zhou, and D. Hanna, “Effects of different lightweight functional fillers for use in cementitious composites,” Constr. Build. Mater., vol. 159, January 20 2018. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2017.10.102

A. Hanif, Z. Lu, Y. Cheng, S. Diao, and Z. Li, “Effects of different lightweight functional fillers for use in cementitious composites,” Int. J. Concr. Struct. Mater., vol. 11, no. 1, March 2017. [Online]. Available: https://doi.org/10.1007/s40069-016-0184-1

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Ingeniería civil y Arquitectura. Determinación de la masa unitaria y los vacíos entre partículas y agregados,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 92, 1995.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Ingeniería civil y Arquitectura. Método para determinar la densidad y la absorción del agregado fino,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 237, 1995.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Ingeniería civil y Arquitectura. Método de ensayo para determinar la densidad y la absorción del agregado grueso,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 176, 1995.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Ingeniería civil y Arquitectura. Método de ensayo para el análisis por tamizado de los agregados finos y grueso,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 77, 2007.

Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91), ACI Committee 211, 2002.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Ingeniería civil y Arquitectura. Método de ensayo para determiner el asentamiento del concreto,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 396, 2018.

Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “Concretos. Elaboración y curado de especímenes de concreto en obra,” Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá, Col, Tech. Rep. NTC 550, 2000.

H. Su, J. Yang, T. Ling, G. S. Ghataora, and S. Dirar, “Properties of concrete prepared with waste tyre rubber particles of uniformand varying sizes,” J. Clean. Prod, vol. 91, March 15 2015. [Online]. Available: https://doi.org/10.1016/j.jclepro.2014.12.022

A. Turatsinze and M. Garros, “On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates,” J. Clean. Prod, vol. 52, no. 10, August 2008. [Online]. Available: https://doi.org/10.1016/j.resconrec.2008.06.012

V. A. Perfilov, D. V. Oreshkin, and V. S. Semenov, “Environmentally Safe Mortar and Grouting Solutions with Hollow Glass Microspheres,” Procedia Eng., vol. 150, 2016. [Online]. Available: https://doi.org/10.1016/j.proeng.2016.07.086

L. Desgranges and et al, “Hydrogen thermal motion in calcium hydroxide: Ca(OH)2,” Acta Crystallogr. Sect. B, vol. B49, 1993. [Online]. Available: https://doi.org/10.1107/S0108768193003556

D. Oreshkin, V. Semenov, and T. Rozovskaya, “Properties of Light-weight Extruded Concrete with Hollow Glass Microspheres,” Procedia Eng., vol. 153, 2016. [Online]. Available: https://doi.org/10.1016/j.proeng.2016.08.214

E. Zolotoyabko and et al, “Differences between bond lengths in biogenic and geological calcite,” Cryst. Growth Des., vol. 10, no. 3, March 2010. [Online]. Available: https://doi.org/10.1021/cg901195t

Downloads

Published

2021-04-28

How to Cite

Valencia-Villegas, J. P., González-Mesa, A. M., & Arbeláez-Pérez, O. F. (2021). Properties of modified concrete with crumb rubber: effect of the incorporation of hollow glass microspheres. Revista Facultad De Ingeniería Universidad De Antioquia, (98), 59–68. https://doi.org/10.17533/udea.redin.20200473