Adsorption in a binary system of Pb (II) and Ni (II) using lemon peels
DOI:
https://doi.org/10.17533/udea.redin.20200691Keywords:
mathematical models, thermodynamics, metals, wastewaterAbstract
The elimination of pollutants in water sources is a widely studied issue with the purpose of preserving the environment. In this work, the use of lemon peel (Citrus lemon) as a bio-sorbent in the removal of Pb (II) and Ni (II) is studied, varying the temperature, adsorbent dose, and particle size. The materials were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis, to determine the bio adsorbent’s physicochemical properties. FTIR and EDS techniques confirmed the precipitation of ions on the adsorbent after the adsorption process. It was found that the optimal conditions according to the Response Surface Methodology (RSM) are: particle size for Ni (II) of 1 and 0.355 mm, adsorbent dose 0.077 g and 0.117 g, and temperatures of 34 and 45 ºC, for Pb (II) and Ni (II), respectively. The results reported that the Dubinin-Radushkevich isotherm and the pseudo-second-order model are more in line with the experimental data, suggesting that the adsorption process is driven by physisorption and occurs in multilayers. Thermodynamic parameters suggest that the process is exothermic for Ni (II) and endothermic for Pb (II), and irreversible. The binary study showed that there is no competition for active sites between the ions.
Downloads
References
S. Kulbir, W. S. Abdullahi, and R. Chhotu, “Removal of heavy metals by adsorption using agricultural based residue : A review,” Res. J. Chem. Environ., vol. 22, no. 5, pp. 65–74, May 2018.
J. Liu, L. Cao, and S. Dou, “Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea,” Sci. Total Environ., vol. 670, June 20 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.03.140
V. Manirethan, N. Gupta, R. M. Balakrishnan, and K. Raval, “Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes,” Environ. Sci. Pollut. Res., October 2019. [Online]. Available: https://doi.org/10.1007/s11356-019-06310-8
A. H. Rasmey, A. A. Aboseidah, and A. K. Youssef, “Application of langmuir and freundlich isotherm models on biosorption of Pb2+ by freez-dried biomass of Pseudomonas aeruginosa,” Egyptian Journal of Microbiology, vol. 53, no. 1, November 2018. [Online]. Available: https://doi.org/10.21608/ejm.2018.2998.1050
J. L. Gong et al, “Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column,” Appl. Surf. Sci., vol. 330, March 1 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2014.11.068
M. Manjuladevi, R. Anitha, and S. Manonmani, “Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel,” Appl. Water Sci., vol. 8, March 2018. [Online]. Available: https://doi.org/10.1007/s13201-018-0674-1
N. A. Medellín, M. G. Hernández, J. J. Salazar, G. J. Labrada, and A. Aragón, “Bioadsorción de plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (Agave lechuguilla Torr. y Yucca carnerosana (Trel.) McKelvey),” Rev. Int. Contam. Ambient., vol. 33, no. 2, May 2017. [Online]. Available: http://dx.doi.org/10.20937/rica.2017.33.02.08
S. Buxton and et al, “Concise review of nickel human health toxicology and ecotoxicology,” Inorganics, vol. 7, no. 7, July 2019. [Online]. Available: https://doi.org/10.3390/inorganics7070089
S. Singh and S. R. Shukla, “Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels,” Inorganics, vol. 36, no. 6, May 2017. [Online]. Available: https://doi.org/10.1002/ep.12526
E. Bibaj and et al, “Activated carbons from banana peels for the removal of nickel ions,” Int. J. Environ. Sci. Technol., vol. 16, May 2018. [Online]. Available: https://doi.org/10.1007/s13762-018-1676-0
G. Genchi, A. Carocci, G. Lauria, M. S. Sinicropi, and A. Catalano, “Nickel: Human health and environmental toxicology,” International Journal of Environmental Research and Public Health, vol. 17, no. 3, January 21 2020. [Online]. Available: https://doi.org/10.3390/ijerph17030679
S. Muthusaravanan and et al, “Phytoremediation of heavy metals: Mechanisms, methods and enhancements,” Environ. Chem. Lett., vol. 16, June 2018. [Online]. Available: https://doi.org/10.1007/s10311-018-0762-3
Y. F. Lam, L. Yee, S. J. Chua, S. S. Lim, and S. Gan, “Ecotoxicology and environmental eafety insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent,” International Journal of Environmental Research and Public Health, vol. 127, no. 3, May 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.01.003
Y. Wu and et al, “Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems,” Biochem. Eng. J., vol. 105, Part A, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.bej.2015.08.017
A. N. Amro, M. K. Abhary, M. M. Shaikh, and S. Ali, “Removal of lead and cadmium ions from aqueous solution by adsorption on a low-cost phragmites biomass,” Processes, vol. 7, no. 7, July 2019. [Online]. Available: https://doi.org/10.3390/pr7070406
S. M. Batagarawa and A. K. Ajibola, “Comparative evaluation for the adsorption of toxic heavy metals on to millet, corn and rice husks as adsorbents,” J. Anal. Pharm. Res., vol. 8, no. 3, May 2019. [Online]. Available: https://doi.org/10.15406/japlr.2019.08.00325
R. Sudha, K. Srinivasan, and P. Premkumar, “Removal of nickel (II) from aqueous solution using Citrus Limettioides peel and seed carbon,” Ecotoxicol. Environ. Saf., vol. 117, July 2015. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2015.03.025
S. Janyasuthiwong and et al, “Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes,” Environ. Technol., vol. 36, no. 24, June 17 2015. [Online]. Available: https://doi.org/10.1080/09593330.2015.1053537
O. S. Lawal, O. S. Ayanda, O. O. Rabiu, and K. O. Adebowale, “Application of black walnut (Juglans nigra) husk for the removal of lead (II) ion from aqueous solution,” Water Sci. Technol., vol. 75, no. 10, May 2017. [Online]. Available: https://doi.org/10.2166/wst.2017.125
N. P. Raval, P. U. Shah, , and N. K. Shah, “Adsorptive removal of nickel(II) ions from aqueous environment: A review,” J. Environ. Manage., vol. 179, September 1 2016. [Online]. Available: https://doi.org/10.1016/j.jenvman.2016.04.045
C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad, “Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review,” Biochem. Pharmacol., vol. 5, no. 3, June 2017. [Online]. Available: https://doi.org/10.1016/j.jece.2017.05.029
J. Brizi and F. H. Martínez and E. G. Paranhos and F. García, “Evaluation of adsorption processes of metal ions in multielement aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review,” Chemical Engineering Journal, vol. 357, February 1 2019. [Online]. Available: https://doi.org/10.1016/j.cej.2018.09.125
S. Bolisetty, M. Peydayesh, and R. Mezzenga, “Sustainable technologies for water purification from heavy metals: Review and analysis,” Chem. Soc. Rev., vol. 48, no. 2, January 2019. [Online]. Available: https://doi.org/10.1039/C8CS00493E
X. Hu, Y. Xue, L. Liu, Y. Zeng, and L. Long, “Preparation and characterization of Na2S-modified biochar for nickel removal,” Environ. Sci. Pollut. Res., vol. 25, no. 10, January 26 2018. [Online]. Available: https://doi.org/10.1007/s11356-018-1298-6
M. D. De Luna and Murniati and W. Budianta and K. K. Rivera and R. O. Arazo, “Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks,” J. Environ. Chem. Eng., vol. 5, no. 2, April 2017. [Online]. Available: https://doi.org/10.1016/j.jece.2017.02.018
E. D. Asuquo and A. D. Martin, “Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: Characterisation, kinetic and isotherm studies,” J. Environ. Chem. Eng., vol. 4, no. 4, December 2016. [Online]. Available: https://doi.org/10.1016/j.jece.2016.09.024
C. Tejada, A. Villabona, E. Ruiz, A. Herrera, and R. Ortega, “Characterization and use of agroindustrial by-products in the removal of metal ions in aqueous solution,” J. Teknol., vol. 81, no. 6, September 2019. [Online]. Available: https://doi.org/10.11113/jt.v81.13644
C. Tejada, A. Gonzalez, and A. Villabona, “Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution,” Appl. Sci., vol. 9, no. 21, October 23 2019. [Online]. Available: https://doi.org/10.3390/app9214486
M. Basu, A. K. Guha, and L. Ray, “Adsorption behavior of cadmium on husk of lentil,” Process Saf. Environ. Prot., vol. 106, February 2017. [Online]. Available: https://doi.org/10.1016/j.psep.2016.11.025
L. Xia, X. Xu, W. Zhu, Q. Huang, and W. Chen, “A Comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC,” Int. J. Mol. Sci., vol. 16, no. 7, July 2015. [Online]. Available: https://doi.org/10.3390/ijms160715670
Y. Deng, S. Huang, C. Dong, Z. Meng, and X. Wang, “Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars,” Bioresour. Technol., vol. 303, May 2020. [Online]. Available: https://doi.org/10.1016/j.biortech.2020.122853
O. Allahdin, J. Mabingui, M. Wartel, and A. Boughriet, “Removal of Pb2+ ions from aqueous solutions by fixed-BED column using a modified brick: (Micro)structural, electrokinetic and mechanistic aspects,” Appl. Clay Sci., vol. 148, November 2017. [Online]. Available: https://doi.org/10.1016/j.clay.2017.08.002
X. Huang and et al, “The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques,” Int. J. Environ. Res. Public Health, vol. 14, no. 10, September 28 2017. [Online]. Available: https://doi.org/10.3390/ijerph14101145
Z. Mahdi, Q. J. Yu, and A. E. Hanandeh, “Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar,” J. Environ. Chem. Eng., vol. 6, no. 1, February 2018. [Online]. Available: https://doi.org/10.1016/j.jece.2018.01.021
H. Haroon and et al, “Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors,” Korean J. Chem. Eng., vol. 33, no. 10, September 19 2016. [Online]. Available: https://doi.org/10.1007/s11814-016-0160-0
N. A. Salem and S. M. Yakoot, “Non-steroidal anti-inflammatory drug, ibuprofen adsorption using rice straw based biochar,” Int. J. Pharmacol., vol. 12, no. 7, July 2016. [Online]. Available: https://doi.org/10.3923/ijp.2016.729.736
A. U. Haq and et al, “Evaluation of sorption mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) peels,” J. Oleo Sci., vol. 66, no. 7, 2017. [Online]. Available: https://doi.org/10.5650/jos.ess17020
N. M. Rane, S. P. Shewale, S. V. Admane, and R. S. Sapkal, “Adsorption of hexavalent chromium by using sweet lime and orange peel powder,” in Novel Water Treatment and Separation Methods: Simulation of Chemical Processes, B. A. Bhanvase, R. P. Ugwekar, and R. B. Mankar, Eds. New York, EE.UU.: Taylor & Francis Group, 2017, p. 14.
L. A. Romero, H. García, L. V. Gonzalez, L. A. Baldenegro, and F. Carrasco, “Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution,” J. Clean. Prod., vol. 162, September 20 2017. [Online]. Available: https://doi.org/10.1016/j.jclepro.2017.06.032
F. Mutongo, O. Kuipa, and P. K. Kuipa, “Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent,” Bioinorg. Chem. Appl., vol. 2014, no. 3, June 29 2014. [Online]. Available: https://doi.org/10.1155/2014/973153
N. Ibisi and C. Asoluka, “Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water,” Chem. Int., vol. 4, no. 1, 2018. [Online]. Available: https://doi.org/10.31221/osf.io/yrpvn
M. Akram, H. N. Bhatti, M. Iqbal, S. Noreen, and S. Sadaf, “Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies,” Biochem. Pharmacol., vol. 5, no. 1, February 2017. [Online]. Available: https://doi.org/10.1016/j.jece.2016.12.002
P. Premkumar and R. Sudha, “Comparative studies on the removal of chromium(VI) from aqueous solutions using raw and modified Citrus Limettioides peel,” Indian J. Chem. Technol., vol. 25, no. 3, pp. 255– 265, May 2018.
H. N. Tran, S. J. You, and H. P. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study,” J. Environ. Chem. Eng., vol. 4, no. 3, September 2016. [Online]. Available: https://doi.org/10.1016/j.jece.2016.05.009
S. Afroze and T. K. Sen, “A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents,” Water, Air Soil Pollut., vol. 229, no. 7, July 2018. [Online]. Available: https://doi.org/10.1007/s11270-018-3869-z
K. M. Doke and E. M. Khan, “Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell,” Arab. J. Chem., vol. 10, Supplement 1, February 2017. [Online]. Available: https://doi.org/10.1016/j.arabjc.2012.07.031
Ş. Parlayici and E. Pehlivan, “Comparative study of Cr (VI) removal by bio-waste adsorbents: Equilibrium, kinetics, and thermodynamic,” J. Anal. Sci. Technol., vol. 10, no. 1, April 6 2019. [Online]. Available: https://doi.org/10.1186/s40543-019-0175-3
W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, vol. 221, April 2019. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2019.01.100
M. H. Dehghani, M. Farhang, M. Alimohammadi, M. Afsharnia, and G. Mckay, “Adsorptive removal of fluoride from water by activated carbon derived from CaCl2- modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions,” Chem. Eng. Commun., vol. 205, no. 7, March 2018. [Online]. Available: https://doi.org/10.1080/00986445.2018.1423969
S. Madala, S. K. Nadavala, S. Vudagandla, V. M. Boddu, and K. Abburi, “Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent,” Arab. J. Chem., vol. 43, no. S2, August 2013. [Online]. Available: https://doi.org/10.1016/j.arabjc.2013.07.017
K. E. Ass, “Adsorption of cadmium and copper onto natural clay: Isotherm, kinetic and thermodynamic studies,” Glob. Nest J., vol. 20, no. 2, January 2018. [Online]. Available: https://doi.org/10.30955/gnj.002352
X. Li, C. Wang, J. Tian, J. Liu, and G. Chen, “Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical reagents,” Environ. Res., vol. 186, July 2020. [Online]. Available: https://doi.org/10.1016/j.envres.2020.109502
E. K. Leizou, M. A. Ashraf, J. A. Chowdhury, and H. Rashid, “Adsorption studies of Pb2+ and Mn2+ ions on low-cost ddsorbent: Unripe Plantain (Musa Paradisiaca) peel biomass,” Acta Chem. Malaysia, vol. 2, no. 1, August 2018. [Online]. Available: https://doi.org/10.26480/acmy.01.2018.11.15
R. Rinaldi, Y. Yasdi, and W. L. Hutagalung, “Removal of Ni (II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium lappaceum L.) as adsorbent,” AIP Conf. Proc., vol. 2026, no. 1, October 2018. [Online]. Available: https://doi.org/10.1063/1.5065058
Z. Shen, Y. Zhang, O. McMillan, F. Jin, and A. Al-Tabbaa, “Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk,” Environ. Sci. Pollut. Res., vol. 24, no. 14, March 31 2017. [Online]. Available: https://doi.org/10.1007/s11356-017-8847-2
C. Tejada, A. Herrera, and A. Villabona, “Assessment of chemically modified lignocellulose waste for the adsorption of Cr (VI),” Rev. Fac. Ing., vol. 29, no. 54, January 2020. [Online]. Available: https://doi.org/10.19053/01211129.v29.n54.2020.10298
A. Villabona, C. Tejada, and R. Ortega, “Modelling of the adsorption kinetics of Chromium (VI) using waste biomaterials,” Rev. Mex. Ing. Química, vol. 19, no. 1, August 2020. [Online]. Available: https://doi.org/10.24275/rmiq/IA650
S. Mondal, K. Sinha, K. Aikat, and G. Halder, “Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk,” J. Environ. Chem. Eng., vol. 3, no. 1, March 2015. [Online]. Available: https://doi.org/10.1016/j.jece.2014.11.021
F. Batool, J. Akbar, S. Iqbal, S. Noreen, and S. N. Abbas, “Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis,” Bioinorg. Chem. Appl., vol. 2018, 2018. [Online]. Available: https://doi.org/10.1155/2018/3463724
J. G. Meneguin and et al, “Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling,” Process Saf. Environ. Prot., vol. 111, October 2017. [Online]. Available: https://doi.org/10.1016/j.psep.2017.07.005
P. Tapia, O. Pavez, N. Garrido, and B. Sepúlveda, “Remoción de iones Cobre y Niquel con cáscara de maní,” Holos, vol. 3, September 2018. [Online]. Available: https://doi.org/10.15628/holos.2018.7064
L. Sellaoui, G. L. Dotto, A. B. Lamine, and A. Erto, “Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models,” Environ. Sci. Pollut. Res., vol. 24, no. 24, August 2017. [Online]. Available: https://doi.org/10.1007/s11356-017-9562-8
Y. Deng, S. Huang, D. A. Laird, X. Wang, and Z. Meng, “Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems,” Environ. Sci. Pollut. Res., vol. 218, March 2019. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2018.11.081
S. Ratan, I. Singh, J. Sarkar, and R. M. Naik, “The removal of nickel from waste water by modified coconut coir pith,” Chem. Sci. J., vol. 7, no. 3, July 2016. [Online]. Available: https://doi.org/10.4172/2150-3494.1000136
J. Gorimbo, B. Taenzana, A. A. Muleja, A. T. Kuvarega, and L. L. Jewell, “Adsorption of cadmium, nickel and lead ions: Equilibrium, kinetic and selectivity studies on modified clinoptilolites from the USA and RSA,” Environ. Sci. Pollut. Res., vol. 25, no. 31, November 2018. [Online]. Available: https://doi.org/10.1007/s11356-018-2992-0
M. Osińska, “Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels,” J. Sol-Gel Sci. Technol., vol. 81, no. 3, March 2017. [Online]. Available: https://doi.org/10.1007/s10971-016-4256-0
Z. Mahdi, Q. J. Yu, and A. E. Hanandeh, “Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: Batch and fixed bed experiments,” Sep. Sci. Technol., vol. 54, no. 6, 2019. [Online]. Available: https://doi.org/10.1080/01496395.2018.1523192
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.