Polimorfismo de la interleuquina 1 beta (Il-1β) y ortodoncia: revisión sistemática
DOI:
https://doi.org/10.17533/udea.rfo.v31n1-2a13Palabras clave:
Interleuquina-1 beta, Técnicas de movimiento dental, Ortodoncia, Resorción radicularResumen
Introducción: el objetivo de esta revisión sistemática es analizar, a través de la literatura publicada, la relación entre el polimorfismo de la interleuquina 1 beta (IL-1β) y la ortodoncia. Métodos: se aplicó la estrategia de búsqueda desarrollada para Medline, Scopus y Embase y se verificaron los registros de la búsqueda y los artículos seleccionados de acuerdo a los lineamientos de la declaración para Revisiones Sistemáticas y Metaanálisis (PRISMA). Dos investigadores evaluaron los estudios en humanos sometidos a tratamiento de ortodoncia, donde se evalúan el polimorfismo de la IL-1β y la velocidad de movimiento y/o resorción radicular, como ensayos clínicos, estudios de casos y controles, estudios transversales o estudios de cohortes, publicados hasta abril de 2017. Resultados: de los 123 estudios relevantes identificados, 9 de ellos, publicados entre 2001 y 2016, fueron incluidos en el análisis detallado. Los estudios de movimiento dental concuerdan en el aumento de los niveles de IL-1β en las primeras horas de inicio del tratamiento ortodóncico. Conclusión: se encontró asociación del polimorfismo de la IL-1β con la resorción radicular externa y la velocidad de movimiento dental.
Descargas
Citas
Iwasaki LR, Crouch LD, Nickel JC. Genetic factors and tooth movement. Semin Orthod. 2008; 14(2): 135–45. DOI: https://doi.org/10.1053/j.sodo.2008.02.004
Valderrama G, Vijande F, Escribano J, Garrido-Pertierra A, Bascones A. El polimorfismo de la IL-1 y su eventual asociación con la enfermedad periodontal crónica: una revisión de la literatura (II). Av Periodoncia. 2005; 17(3): 157–63.
Fernández R, Tobón DM, Osorno K, Zuluaga OE. Polimorfismo genético para la interleukina-1ß como modulador de los procesos de reabsorción ósea. Rev CES Odontol. 2012; 25(1): 92–101.
Iwasaki LR, Gibson CS, Crouch LD, Marx DB, Pandey JP, Nickel JC. Speed of tooth movement is related to stress and IL-1 gene polymorphisms. Am J Orthod Dentofacial Orthop. 2006; 130(6): e1–9. DOI: https://doi.org/10.1016/j.ajodo.2006.04.022
Al-Qawasmi RA, Hartsfield JK, Everett ET, Flury L, Liu L, Foroud TM et al. Genetic predisposition to external apical root resorption. Am J Orthod Dentofacial Orthop. 2003; 123(3): 242–52. DOI: https://doi.org/10.1067/mod.2003.42
Segal GR, Schiffman PH, Tuncay OC. Meta-analysis of the treatment-related factors of external apical root resorption. Orthod Craniofacial Res. 2004; 7(2): 71–8.
Richter AE, Arruda AO, Peters MC, Sohn W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop. 2011; 139(5): 657–64. DOI: https://doi.org/10.1016/j.ajodo.2009.06.037
Johal A, Alyaqoobi I, Patel R, Cox S. The impact of orthodontic treatment on quality of life and self-esteem in adult patients. Eur J Orthod. 2015; 37(3): 233–7. DOI: https://doi.org/10.1093/ejo/cju047
Aristizábal JF. Ortodoncia acelerada y ortodoncia de tránsito expreso (OTE)®: un concepto contemporáneo de alta eficiencia. CES Odontol. 2014; 27(1): 56–73.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7): e1000097. DOI: https://doi.org/10.1371/journal.pmed.1000097
Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006; 129(4): 458–68. DOI: https://doi.org/10.1016/j.ajodo.2005.12.013
Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004; 306(5696): 640–3. DOI: https://doi.org/10.1126/science.1104635
Furushima K, Shimo-Onoda K, Maeda S, Nobukuni T, Ikari K, Koga H et al. Large-scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res. 2002; 17(1): 128–37. DOI: https://doi.org/10.1359/jbmr.2002.17.1.128
Ho NC, Jia L, Driscoll CC, Gutter EM, Francomano C a. A skeletal gene database. J Bone Miner Res. 2000; 15(11): 2095–122. DOI: https://doi.org/10.135/jbmr.2000.15.11.2095
Roberts WE, Huja SS, Roberts JA. Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives. Semin Orthod. 2004; 10(2): 123–61. DOI: https://doi.org/10.1053/j.sodo.2004.01.003
Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cells Mater. 2014; 28: 269–86.
Mackie EJ. Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol. 2003; 35(9): 1301–5.
Kang KS, Lee SJ, Lee H, Moon W, Cho DW. Effects of combined mechanical stimulation on the proliferation
and differentiation of pre-osteoblasts. Exp Mol Med. 2011; 43(6): 367–73. DOI: https://doi.org/10.3858/
emm.2011.43.6.040
Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354(21): 2250–61. DOI: https://doi.org/10.1056/NEJMra053077
Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell… and more. Endocr Rev. 2013; 34(5): 658–90. DOI: https://doi.org/10.1210/er.2012-1026
Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A. The role of osteocytes in bone resorption during orthodontic tooth movement. J Dent Res. 2013; 92(4): 340–5. DOI: https://doi.org/10.1177/0022034513476037
Shoji-Matsunaga A, Ono T, Hayashi M, Takayanagi H, Moriyama K, Nakashima T. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep. 2017; 7(1): 1–8. DOI: https://doi.org/10.1038/s41598-017-09326-7
Xiong J, Brien CAO. Osteocyte RANKL: New insights into the control of bone remodeling. J Bone Miner Res. 2012; 27(3): 499–505. DOI: https://doi.org/10.1002/jbmr.1547
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003; 423(6937):
–42. DOI: https://doi.org/10.1038/nature01658
Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000; 289(5484): 1504-8. DOI: https://doi.org/10.1126/science.289.5484.1504
Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop. 2001; 119(3): 307–12. DOI: https://doi.org/10.1067/mod.2001.110809
Lee DY, Ahn HW, Herr Y, Kwon YH, Kim SH, Kim EC. Periodontal responses to augmented corticotomy with collagen membrane application during orthodontic buccal tipping in dogs. Biomed Res Int. 2014; 2014. DOI: https://doi.org/10.1155/2014/873918
Wilcko W, Wilcko MT. Accelerating tooth movement: the case for corticotomy-induced orthodontics. Am J Orthod Dentofacial Orthop. 2013; 144(1): 4-12. DOI: https://doi.org/10.1016/j.ajodo.2013.04.009
Buschang PH, Campbell PM, Ruso S. Accelerating tooth movement with corticotomies: is it possible and desirable? Semin Orthod. 2012; 18(4): 286–94.
Gong Y, Lu J, Ding X. Clinical, microbiologic, and immunologic factors of orthodontic treatmentinduced gingival enlargement. Am J Orthod Dentofacial Orthop. 2011; 140(1): 58–64. DOI: https://doi.org/10.1016/j.ajodo.2010.02.033
Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone. Matrix Biol. 2000; 19(2): 91–6.
Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 2001; 12(5): 414–24.
Cork MJ, Tarlow JK, Clay FE, Crane A, Blakemore AI, McDonagh AJ et al. An allele of the interleukin-1 receptor antagonist as a genetic severity factor in alopecia areata. J Invest Dermatol. 1995;104(5 Suppl): 15S–6.
Pociot F, Mølvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992; 22(6): 396–402.
Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-
Ra and IL-1beta genes. Eur J Immunol. 1998; 28(8): 2598–602. DOI: https://doi.org/10.1002/(SICI)1521-
(199808)28:08%3C2598::AID-IMMU2598%3E3.0.CO;2-K
Danis VA, Millington M, Hyland VJ, Grennan D. Cytokine production by normal human monocytes: intersubject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995; 99(2): 303–10. DOI: https://doi.org/10.1111/j.1365-2249.1995.tb05549.x
Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod
Dentofacial Orthop. 2006; 129(4): e1–32.
Davidovitch Z. Tooth movement. Crit Rev Oral Biol Med. 1991; 2(4): 411–50.
Owman-Moll P, Kurol J, Lundgren D. Continuous versus interrupted continuous orthodontic force related to early tooth movement and root resorption. Angle Orthod. 1995; 65(6): 401-2.
Owman-Moll P, Kurol J, Lundgren D. Effects of a doubled orthodontic force magnitude on tooth movement and root resorptions. An inter-individual study in adolescents. Eur J Orthod. 1996; 18(2): 141–50. DOI: https://doi.org/10.1093/ejo/18.2.141
Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB et al. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofacial Orthop. 2005; 128(4): 483–91. DOI: https://doi.org/10.1016/j.ajodo.2004.03.037
Mavreas D, Athanasiou AE. Factors affecting the duration of orthodontic treatment: a systematic review. Eur J Orthod. 2008; 30(4): 386–95. DOI: https://doi.org/10.1093/ejo/cjn018
Fink DF, Smith RJ. The duration of orthodontic treatment. Am J Orthod Dentofacial Orthop. 1992; 102(1): 45–51. DOI: https://doi.org/10.1016/0889-5406(92)70013-Z
Dolce C, Scott Malone J, Wheeler TT. Current concepts in the biology of orthodontic tooth movement.
Semin Orthod. 2002; 8(1): 6–12. DOI: https://doi.org/10.1053/sodo.2002.28165
Zainal Ariffin SH, Yamamoto Z, Zainol Abidin lntan Z, Megat Abdul Wahab R, Zainal Ariffin Z. Cellular and molecular changes in orthodontic tooth movement. Sci World J. 2011; 11: 1788–803. DOI: https://doi.org/10.1100/2011/761768
Dinarello C. Interleukin-1 and interleukin-1 antagonism. Blood. 1991; 77(8): 1627–52.
Stashenko P, Obernesser MS, Dewhirst FE. Effect of immune cytokines on bone. Immunol Invest. 1989; 18(1–4): 239–49.
Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth
factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res. 1996; 75(1): 562–7. DOI: https://doi.org/10.1177/00220345960750010801
Grieve WG 3rd, Johnson GK, Moore RN, Reinhardt RA, DuBois LM. Prostaglandin E (PGE) and interleukin-1
beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1994; 105(4): 369–74.
Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol. 2001; 46(2): 185–9. DOI: https://doi.org/10.1016/s0003-9969(00)00088-1
Nieto-Nieto N, Solano JE, Yañez-Vico R. External apical root resorption concurrent with orthodontic forces: the genetic influence. Acta Odontol Scand. 2017; 75(4): 280–7. DOI: https://doi.org/10.1080/00016357.2017.1294260
Harris EF, Kineret SE, Tolley EA. A heritable component for external apical root resorption in patients treated orthodontically. Am J Orthod Dentofacial Orthop. 1997; 111(3): 301–9.
Hartsfield JKJ, Everett ET, Al-Qawasmi RA. Genetic factors in external apical root resorption and orthodontic treatment. Crit Rev Oral Biol Med. 2004; 15(2): 115–22.
Abass SK, Hartsfield JK, Al-Qawasmi RA, Everett ET, Foroud TM, Roberts WE. Inheritance of susceptibility to root resorption associated with orthodontic force in mice. Am J Orthod Dentofacial Orthop. 2008;134(6): 742–50. DOI: https://doi.org/10.1016/j.ajodo.2007.04.035
Bastos Lages EM, Drummond AF, Pretti H, Costa FO, Lages EJP, Gontijo AI et al. Association of functional gene polymorphism IL-1 beta in patients with external apical root resorption. Am J Orthod Dentofacial Orthop. 2009; 136(4): 542–6. DOI: https://doi.org/10.1016/j.ajodo.2007.10.051
Iglesias-Linares A, Yañez-Vico RM, Ortiz-Ariza E, Ballesta S, Mendoza-Mendoza A, Perea E et al. Postorthodontic external root resorption in root-filled teeth is influenced by interleukin-1b polymorphism. J Endod. 2012; 38(3): 283–7. DOI: https://doi.org/10.1016/j.joen.2011.12.022
Tomoyasu Y, Yamaguchi T, Tajima A, Inoue I, Maki K. External apical root resorption and the interleukin-1B
gene polymorphism in the Japanese population. Orthod Waves. 2009; 68(4): 152–7. DOI: http://dx.doi.org/10.1016/j.odw.2009.05.002
Linhartova P, Cernochova P, Izakovicova Holla L. IL1 gene polymorphisms in relation to external apical root resorption concurrent with orthodontia. Oral Dis. 2013; 19(3): 262–70. DOI: https://doi.org/10.1111/j.1601-0825.2012.01973.x
Lince Vides F, De La Ossa Salcedo J, Hernandez Tirado R, Buelvas Montes Y, Bustillo Arrieta J, Madera Anaya M. Polimorfismo (+3954C>T) del gen IL-1β y su asociación con la resorción radicular apical externa post-tratamiento ortodóntico. Int J Odontostomat. 2016; 10(2): 243–8. DOI: http://dx.doi.org/10.4067/S0718-381X2016000200009
Wu FL, Wang LY, Huang YQ, Guo WB, Liu CD, Li SG. Interleukin-1β +3954 polymorphisms and risk of external apical root resorption in orthodontic treatment: a meta-analysis. Genet Mol Res. 2013; 12(4): 4678–86. DOI: https://doi.org/10.4238/2013.October.18.6
Iwasaki L, Chandler J, Marx D, Pandey J, Nickel J. IL-1 gene polymorphisms, secretion in gingival crevicular fluid, and speed of human orthodontic tooth movement. Orthod Craniofac Res. 2009; 12(2): 129–40. DOI: https://doi.org/10.1111/j.1601-6343.2009.01446.x
Yamaguchi M, Yoshii M, Kasai K. Relationship between substance P and interleukin-1beta in gingival crevicular fluid during orthodontic tooth movement in adults. Eur J Orthod. 2006; 28(3): 241–6. DOI: https://doi.org/10.1093/ejo/cji100
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2019 Revista Facultad de Odontología Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El Derecho de autor comprende los derechos morales y los derechos patrimoniales.
1. Los derechos morales: nacen en el momento de la creación de la obra, sin necesidad de registro. Corresponden al autor de manera personal e irrenunciable; además, son imprescriptibles, inembargables y no negociables. Son derechos morales el derecho a la paternidad de la obra, el derecho a la integridad de la obra, el derecho a conservar la obra inédita o publicarla bajo seudónimo o anónimamente, el derecho a modificar la obra, el derecho al arrepentimiento, y el derecho a la mención, según definiciones consignadas en el artículo 40 del Estatuto de propiedad intelectual de la Universidad de Antioquia (RESOLUCIÓN RECTORAL 21231 de 2005).
2. Los derechos patrimoniales: consisten en la facultad de disponer y aprovecharse económicamente de la obra por cualquier medio. Además, las facultades patrimoniales son renunciables, embargables, prescriptibles, temporales y transmisibles, y se causan con la publicación, o con la divulgación de la obra. Para el efecto de la publicación de artículos de la Revista de la Facultad de Odontología se entiende que la Universidad de Antioquia es portadora de los derechos patrimoniales del contenido de la publicación.
Yo, el(los) autor(es), y por mi(nuestro) intermedio, la Entidad para la que estoy(estamos) trabajando, transfiero(imos) de manera definitiva, total y sin limitación alguna a la Revista Facultad de Odontología Universidad de Antioquia, los derechos patrimoniales que le corresponden sobre el artículo presentado para ser publicado tanto física como digitalmente. Declaro(amos) además que este artículo ni parte de él ha sido publicado en otra revista.
Política de Acceso Abierto
Esta revista provee acceso libre inmediato a su contenido, bajo el principio de que poner la investigación a disposición del público de manera gratuita contribuye a un mayor intercambio de conocimiento global.
Licencia Creative Commons
La Revista facilita sus contenidos a terceros sin mediar para ello ningún tipo de contraprestación económica o embargo sobre los artículos. Para ello adopta el modelo de contrato de licenciamiento de la organización Creative Commons denominada Atribución – No comercial – Compartir igual (BY-NC-SA). Esta licencia les permite a otras partes distribuir, remezclar, retocar y crear a partir de la obra de modo no comercial, siempre y cuando nos den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.