Understanding the concept of continuity within the framework of Pirie and Kieren’s theory
DOI:
https://doi.org/10.17533/udea.unipluri.18631Keywords:
socratic interview, descriptors, function, understanding, limit, infinitesimalAbstract
Our objective was to design and implement a semi-structured interview of Socratic nature to describe how the concept of continuity is understood by four students of differential calculus courses in secondary and higher education institutions in the city of Medellín. It was a qualitative type of research including a case study in order to achieve the objective; the Socratic semi-structured interview was strategy to improve the students’ understanding, in accordance with the framework of Pirie and Kieren’s theory, which served as a theoretical support.
Downloads
References
Campillo Herrero, Pedro y Pérez Carrera, Pedro (1998). «La noción de continuidad desde la óptica de los niveles de van-Hiele». En: Divulgaciones Matemáticas, Vol. 6, N.o 1, pp. 69-80. Maracaibo: Universidad de Zulia.
Cornu, Bernard (1991). «Limits». En: Tall, David (Ed.). Advanced Mathematical Thinking, pp. 153-166. Dordrecht: Springer.
Guzmán, Miguel de (2001). El rincón de la pizarra. Ensayos de visualización en análisis matemático. Elementos básicos del análisis. Madrid: Pirámide.
Hernández Samperio, Roberto, Fernández Collado, Carlos y Baptista lucio, Pilar (2008). Metodología de la investigación. México: McGraw Hill.
Jurado, Flor María y Londoño Caro, René Alejandro (2005). Diseño de una entrevista socrática para el concepto de suma de una serie, vía áreas de figuras planas. Tesis de maestría no publicada. Medellín: Universidad de Antioquia.
Meel, David E. (2003). «Modelos y teorías de la comprensión matemática: comparación de los modelos de Pirie y Kieren sobre el crecimiento de la comprensión matemática y la Teoría APoe». En: RELI-ME. Revista Latinoamenricana de Investigación en Matemática Educativa, Vol. 6, N.o 3, pp. 221-278. México: Comité Latinoamericano de Matemática Educativa (CLAME).
Ministerio de Educación Nacional (MEN)(1998). Lineamientos Curriculares. Matemáticas. Bogotá, Colombia. Fecha de consulta: noviembre 21 de 2009 Cf. http://www.mineducacion.gov.co/cvn/1665/article-89869.html
Pirie, Susana y kieren, Thomas (1994). «Growth in mathematical understanding: How can we characterise it and how can we represent it?» En: Educational Studies in Mathematics, Vol. 26, N.os 2-3, pp. 165-190. Holanda: Kluwer Academic Publishers.
Tall, David (1991). «The psychology of advanced mathematical thinking». En: Tall, David (Ed.). Advanced Mathematical Thinking, pp. 3-21. Dordrecht: Springer.
Giasersfeld, Ernst Von (1987). The Construction of knowledge. Contributions of conceptual semantics. Seaside: Intersystems Publications.
Downloads
Published
How to Cite
Issue
Section
License
Authors who have publications in this Journal accept the following terms:
- The content of each article is the responsibility of its authors
- The author(s) preserve(s) the moral rights over the article and transfer(s) the patrimonial rights to the University of Antioquia, which can publish it or distribute electronic copies, as well as include it in indexing services, directories or national and international Open Access data bases, under the Creative Commons Attribution License (CC BY-NC-ND).
- The author(s) should sign a declaration of transfer of economic rights to the University of Antioquia, after the acceptance of the manuscript.
- Authors are allowed and advised to disseminate their work through the Internet (eg, institutional telematic archives or their website) before and during the submission process. That can produce interesting exchanges and increase citations of the published work.
- The author(s) has (have) the responsibility to arrange and get the necessary permissions to reproduce any material protected by copyright.