Teaching experiments as a methodological approach to Mathematics Education Research

Authors

DOI:

https://doi.org/10.17533/udea.unipluri.19.2.07

Keywords:

teaching experiment, primary education, hypothetical learning trajectory, concept of polygon

Abstract

Teaching experiment is a useful methodological approach in mathematics education research to study how students learn. The objective of this article is to present the characteristics of this methodological approach, through the development of a teaching experiment in a third grade of primary education with 9-year-old students. This teaching experiment is aimed at supporting the learning about the concept of polygon. We exemplify the characteristics of this approach in mathematics education research by underlining (i) use of theories about learning in the design of activities, and (ii) diverse information sources that provide a triangulation of inferences that can emerge. Finally, possible uses of the practice records derived from teaching experiments for teacher training are noted.

|Abstract
= 894 veces | PDF (ESPAÑOL (ESPAÑA))
= 887 veces| | XHTML (ESPAÑOL (ESPAÑA))
= 1086 veces|

Downloads

Download data is not yet available.

Author Biographies

Melania Bernabeu, University of Alicante

Predoctoral Researcher in the Department of Innovation and Didactic Training of the University of Alicante (Spain). https://n9.cl/5woxi

Mar Moreno, University of Alicante

Department of Innovation and Didactic Training, University of Alicante.

Salvador Llinares, University of Alicante

Department of Innovation and Didactic Training, University of Alicante. https://n9.cl/j9pf 

 

References

Battista, M. T. (2007). The Development of Geometric and Spatial Thinking. In F. K. Lester (ed). Second Handbook of Research on Mathematics Teaching and Learning (pp. 843- 908). Charlotte, NC: NCTM-IAP.

Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and levels of sophistication. The Mathematics Enthusiast, 8(3), 507-570.

Battista, M. T. (2012). Cognition-Based Assessment & teaching of geometric Shapes: Building on Students’ Reasoning. EEUU: Heinemann.

Bernabeu, M., & Llinares, S. (2017). Comprensión de las figuras geométricas en niños de 6-9 años. Educación matemática, 29(2), 9-35.

Bernabeu, M., & Moreno, M. (2019). Comprensión de los tipos de triángulos apoyados en el uso del mecano. Uno: Revista de didáctica de las matemáticas, (85), 60-65.

Buchbinder, O., & Kuntze, S. (2018). Mathematics Teachers Engaging with Representations of Practice. A Dynamically Evolving Field. London: Springer.

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York: Macmillan.

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89.

Clements, D. H., Swaminathan, S., Hannibal, M. A. Z., & Sarama, J. (1999). Young children’s concepts of shape. Journal for Research in Mathematics Education, 30, 192–212.

Cobb, P., & Gravemeijer, K. (2008). Experimenting to support and understand learning processes, en Kelly, A.E., Lesh, R.A. y Baek, J.Y. (eds.). Handbook of design research methods in education. Innovations in Science, Technology, Engineering and Mathematics Learning and Teaching, pp. 68-95. Mahwah, NJ: Lawrence Erlbaum Associates.

Cobb, P., & Steffe, L. P. (2010). The constructivist researcher as teacher and model builder. In A journey in mathematics education research (pp. 19-30). Springer, Dordrecht.

Duval, R. (1995). Geometrical Pictures: Kinds of representation and specific processes. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematical education (pp. 142- 157). Berlin: Springer.

Duval, R. (2017). Understanding the mathematical way of thinking – The registers of semiotic representations. London: Springer.

Elia, I., & Gagatsis, A. (2003). Young children’s understanding of geometric shapes: The role of geometric models. European Early Childhood Education Research Journal, 11(2), 43-61.

Gal, H., & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational studies in mathematics, 74(2), 163-183.

Hershkowitz, R. (1989). Visualization in geometry – two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61–76.

Hershkowitz, R., & Vinner, S. (1983). The role of critical and non-critical attributes in the concept image of geometrical concepts. In Proceedings of the 7th PME International Conference (pp. 223-228).

Levenson, S., Tirosh, D., & Tsamir, P. (2011). Preschool Geometry. Theory, Research and Practical Perspectives. Rotterdam: Sense Publishers.

Molina, M., Castro, E., Molina, J. L., & Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 29(1), 75-88.

Ruthven, K., & Goodchild, S. (2008). Linking researching and teaching: Towards synergy of scholarly and craft knowledge. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 561–588). New York, NY: Routledge.

Sánchez-Matamoros, G., Moreno, M., Pérez-Tyteca, P., & Callejo, M.L. (2018). Trayectorias de aprendizaje de La longitud y su medida como instrumento conceptual usado por futuros maestros de Educación Infantil. Revista Latinoamericana de Investigación en Matemática Educativa, 21(2), 203-228.

Schoenfeld, A. (2013). On forests, trees, elephants, and classrooms: a brief for the study of learning ecologies. ZDM. Mathematics Education, 45(3), 491-495.

Seah, R., & Horne, M. (2019). The construction and validation of a geometric reasoning test item to support the development of learning progression. Mathematics Education Research Journal, 1-22.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Handbook of research design in mathematics and science education, 267- 306.

Stylianides, A. & Stylianides, G. (2013). Seeking research-grounded solutions to problems of practice: classroom-based interventions in mathematics education. ZDM. Mathematics Education, 45(3), 333-341.

Sztajn, P., Dick, L., Alnizami, R., Heck, D., & Malzahn, K. (2020). Controlled implementations. Teaching Practice to Practicing mathematics Teachers. In S. Llinares, y O. Chapman (eds.), International Handbook of Mathematics Teacher Education. Volume 2: Tools and Processes in Mathematics Teacher Education, Second Edition, (p. 285-310). Leiden, The Netherland: Brill.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.

Wiliam, D., & Lester, F. K. (2008). On the purpose of mathematics education research: Making productive contributions to policy and practice. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 32–48). New York, NY: Routledge.

Published

2019-12-22

How to Cite

Bernabeu, M., Moreno, M., & Llinares, S. (2019). Teaching experiments as a methodological approach to Mathematics Education Research. Uni-Pluriversidad, 19(2), 103–123. https://doi.org/10.17533/udea.unipluri.19.2.07