The role of realistic tasks in interpreting the remainder of arithmetic division
DOI:
https://doi.org/10.17533/udea.unipluri.20.2.04Keywords:
realistic mathematics, school arithmetic, childhood, divisionAbstract
This paper reports an experience that studied the contribution of realistic tasks inspired by the Realistic Mathematics Education to the interpretation of the remainder in the arithmetic division in young children. The participants were three primary school students (6 to 10 years old) who solved a division task with remainder in a realistic context. The participants were interviewed in a space outside the school environment and they were provided with manipulatives to support the solution and as a tool to make visible the strategies used in the modeling. The main findings reveal that realistic mathematical tasks have the potential to promote exploration, construction, and implementation of spontaneous algorithms in students; seem to solve the problem of interpreting the remainder in arithmetic division; and promote modeling and mathematization by giving access to much more formal mathematics.
Downloads
References
Alsina, A. (2009). El aprendizaje realista: una contribución de la investigación en Educación Matemática a la formación del profesorado. En M. J. González, M. T. González & J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 119–127). Santander: SEIEM.
Bakker, A., & Derry, J. (2011). Lessons from Inferentialism for Statistics Education [Lecciones del inferencialismo para la educación estadística]. Mathematical Thinking and Learning, 13(1-2), 5–26. doi: 10.1080/10986065.2011.538293
Beswick, K. (2011). Putting context in context: an examination of the evidence for the benefits of ‘contextualised’ tasks. International Journal of Science and Mathematics Education 9, 367–390.
Carpenter, T. P., Lindquist, M. M., Matthews, W., & Silver, E. A. (1983). Results of the third NAEP mathematics assessment: Secondary school. Mathematics Teacher, 76, 652–659.
Cisternas Rojas, Y., Gil Llario, M. D., Ceccato, R., y Marí-Sanmillán. (2019). Analysis of the psychometric properties of a multiplication and division processes assessment scale. International Journal of Developmental and Educational Psychology, 1 Monográfico 2, 159–166.
Creswell, J. W. (2013). Research design qualitative, quantitative, and mixed methods approaches. Los Angeles: Sage.
Defranco, T. C., & Curcio, F. R. (1997). A division problem with a remainder embedded across two contexts: Children’s solutions in restrictive versus real-world settings. Focus on Learning Problems in Mathematics, 19 (2), 58–72.
De Lange, J. (1996). Using and applying mathematics in education. En A.J. Bishop (Ed). International Handbook of Mathematics Education, Part I (pp. 49–97). Utrecht: Kluwer Academia Press.
Denzin, N. K., & Lincoln, Y. (2012). La investigación cualitativa como disciplina y como práctica. En N. K.
Denzin, & Y. Lincoln (Edits.), Manual de investigación cualitativa, vol. 1: El campo de la investigación cualitativa (pp. 43–102). Barcelona: Gedisa.
Freudenthal, H. (1991). Revisiting mathematics education. Dordrectht: Kluwer Academic Publishers.
Gravemeijer, K (1994). Developing realistic mathematics education. Utrecht: Freudenthal Institute.
Gravemeijer, K. (2020). A socio-constructivist elaboration of Realistic Mathematics Education. En M. Van den Heuvel-Panhuizen (ed.), National Reflections on the Netherlands Didactics of Mathematics, ICME-13 Monographs, (pp. 217–233). Springer https://doi.org/10.1007/978-3-03033824-4_12
Hernández, R. (2014). Qualitative research through interviews: Its analysis by Grounded Theory. Cuestiones Pedagógicas, 23, 187–210.
Itzcovich, H., Resia de Moreno, B., Novembre, A., & Becerril, M. M. (2009). La matemática escolar: las prácticas de enseñanza en el aula. Buenos Aires: AIQUE.
Kaasila, R., Pehkonen, E. & Hellinen, A. (2010). Finnish pre-service teachers’ and upper secondary students’ understanding of division and reasoning strategies used. Educational Studies in Mathematics, 73 (3) 247–261.
Kool, M. (2020). Sixteenth century reckoners versus twenty-first century problem solvers. En M. Van den Heuvel-Panhuizen (ed.), National Reflections on the Netherlands Didactics of Mathematics, ICME-13 Monographs, (pp.105–120). Springer https://doi.org/10.1007/978-3-030-33824-4_7
Lerman, S. (2001). Cultural, discursive psychology: a sociocultural approach to studying the teaching and learning of mathematics. Educational Studies in Mathematics, 46, 87–113.
Ministerio de Educación Nacional. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Bogotá: Revolución Educativa Colombia Aprende MEN.
National Governors Association & Council of Chief State School Officers. (2010). Common Core State Standards Initiative. Washington, DC: NGA and CCSSO.
Sánchez-Barbero, B; Calatayud, M., y Chamoso, J. M. (2019). Análisis de la interacción de maestros cuando resuelven problemas realistas conjuntamente con sus alumnos en aulas de primaria, teniendo en cuenta su experiencia docente. Uni-pluriversidad, 19(2), 40-59. doi: 10.17533/udea.unipluri.19.2.03
Silver, E., Shapiro, L., & Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: An examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24(2), 117–135.
Van den Heuvel-Panhuizen, M. (2002). Realistic Mathematics Education as work in progress. En Fou-Lai Lin (Eds.). Common sense in mathematics education. Proceedings of 2001 The Netherlands and Taiwan Conference on Mathematics Education (pp. 1–43). Taiwan: National Taiwan Normal University.
Van den Heuvel-Panhuizen (2020). A spotlight on Mathematics Education in the Netherlands and the central role of Realistic Mathematics Education. En M. Van den Heuvel-Panhuizen (ed.), National Reflections on the Netherlands Didactics of Mathematics, ICME-13 Monographs, (pp. 1–14) https://doi.org/10.1007/978-3-030-33824-4_1
Van den Heuvel-Panhuizen, M., & van den Boogaard, S. (2008). Picture Books as an Impetus for Kindergartners’ Mathematical Thinking. Mathematical Thinking and Learning, 10(4) 341–373, DOI: 10.1080/10986060802425539
Vicente, S., van Dooren, W., & Verschaffel (2014). Utilizar las matemáticas para resolver problemas reales. Cultura y Educación, 20 (4) 391–406, DOI:10.1174/113564008786542235
Voigt, M., Fredriksen, H., Rasmussen, C. (2020). Leveraging the design heuristics of realistic mathematics education and culturally responsive pedagogy to create a richer flipped classroom calculus curriculum. ZDM.https://doi.org/10.1007/s11858-019-01124-x
Vos, P. (2020). Task contexts in Dutch Mathematics Education. En M. Van den Heuvel-Panhuizen (ed.), National Reflections on the Netherlands Didactics of Mathematics, ICME-13 Monographs, (pp. 31–53). Springer https://doi.org/10.1007/978-3-030-33824-4_3
Vygotsky, L. (1983). Pensamiento y lenguaje: Teoría del desarrollo cultural y las funciones psíquicas. Buenos Aires: La Pleyade.
Zapata-Cardona, L. (2018). Enseñanza de la estadística desde una perspectiva crítica. Yupana, 10, 30–41.
Zapata-Cardona, L. & Marrugo, L. (2019). Critical citizenship in Colombian statistics textbooks. En G. Burrill, & D. Ben-Zvi (Eds.), Topics and Trends in Current Statistics Education Research. International Perspectives (pp. 373–389). Switzerland: Springer.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who have publications in this Journal accept the following terms:
- The content of each article is the responsibility of its authors
- The author(s) preserve(s) the moral rights over the article and transfer(s) the patrimonial rights to the University of Antioquia, which can publish it or distribute electronic copies, as well as include it in indexing services, directories or national and international Open Access data bases, under the Creative Commons Attribution License (CC BY-NC-ND).
- The author(s) should sign a declaration of transfer of economic rights to the University of Antioquia, after the acceptance of the manuscript.
- Authors are allowed and advised to disseminate their work through the Internet (eg, institutional telematic archives or their website) before and during the submission process. That can produce interesting exchanges and increase citations of the published work.
- The author(s) has (have) the responsibility to arrange and get the necessary permissions to reproduce any material protected by copyright.