Effect of the drying method and texture improvers on reconstitution behavior of yogurt powder: physical and microbiological properties

  • Robinson Monsalve-Atencio Universidad de Antioquia. https://orcid.org/0000-0002-5113-4637
  • Karolay Sanchez Universidad de Antioquia.
  • Juan Chica Universidad de Antioquia.
  • Jairo Camaño Universidad de Antioquia.
  • Johana Saldarriaga Universidad de Antioquia.
  • Julian Quintero-Quiroz Universidad de Antioquia.
Keywords: Yogurt powder, Acid Lactic bacteria, rheological properties, freeze-drying, spray-drying, texture improvers


BACKGROUND: One of the most used and effective preservation strategies in foods is drying. However, there are problems with the rheological properties, color, and viability of lactic acid bacteria in the yogurt once reconstituted when applying such conservation strategies.   OBJECTIVES: Determine the concentration of the type of texture improver and drying that minimizes the negative effect on the rheological, color, and microbiological properties of a reconstituted yogurt powder. METHODS: Intended to determine the texture improver which increases rheological properties of reconstituted yogurt powder, a mixture type experimental design was applied where three texture improvers were assessed; carboxymethylcellulose (CMC) (mass fraction 0 - 1), pectin (mass fraction 0 - 1), and xanthan gum (mass fraction 0 - 1). The rheological parameters; consistency index (K), flow behavior (n), viscosity at 100s-1 (η), the storage (G') and loss (G'') modules, and the phase shift angle (δ) of each of the reconstitutions were considered as design-dependent variables. Secondly, a central composite design (face-centered) was used for assessing the effectiveness of the drying (convection, spray-drying, and freeze-drying), the concentration of the texture improver (0.0 - 1.0%), and the yogurt powder concentration (8.0 - 15.0%). The above-mentioned rheological parameters, color, and viability of the lactic acid bacteria from each reconstituted yogurt powder were considered as the dependent variables. Optimization sought to match the parameters of reconstituted yogurt powder that approximated the conditions of fresh yogurt. RESULTS: The independent variables in their lineal expression and some interactions between them had statistically significant differences (p < 0.05). At a concentration of 10.59% with 0.03% xanthan gum, the reconstitution of freeze-dried yogurt powder was the optimized condition (p < 0.05) and obtained the rheological, color, and microbiological parameters closest to fresh yogurt. CONCLUSIONS: The drying of the yogurt by freeze-drying mixed with xanthan gum as a texture improver allowed to obtain a reconstituted yogurt with properties close to the fresh product for direct consumption.

= 91 veces | PDF
= 69 veces|


Download data is not yet available.

Author Biographies

Robinson Monsalve-Atencio, Universidad de Antioquia.

Bioali Research Group. Department of Food, Faculty of Pharmaceutical and Food Sciences,

Karolay Sanchez, Universidad de Antioquia.

Department of Food, Faculty of Pharmaceutical and Food Sciences

Juan Chica, Universidad de Antioquia.

Department of Food, Faculty of Pharmaceutical and Food Sciences

Jairo Camaño, Universidad de Antioquia.

Department of Food, Faculty of Pharmaceutical and Food Sciences

Johana Saldarriaga, Universidad de Antioquia.

Department of Food, Faculty of Pharmaceutical and Food Sciences

Julian Quintero-Quiroz, Universidad de Antioquia.

Bioali Research Group. Department of Food, Faculty of Pharmaceutical and Food Sciences


Remeuf F, Mohammed S, Sodini I, Tissier JP. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int Dairy J. 2003;13(9):773–82. doi:https://doi.org/10.1016/S0958-6946(03)00092-X

Lee WJ, Lucey JA. Formation and physical properties of yogurt. Asian-Australasian J Anim Sci. 2010;23(9):1127–36. doi:https://doi.org/10.5713/ajas.2010.r.05

Kennas A, Amellal-Chibane H, Kessal F, Halladj F. Effect of pomegranate peel and honey fortification on physicochemical, physical, microbiological and antioxidant properties of yoghurt powder. J Saudi Soc Agric Sci. 2020;19(1):99–108. doi:https://doi.org/10.1016/j.jssas.2018.07.001

de Medeiros ACL, Thomazini M, Urbano A, Correia RTP, Favaro-Trindade CS. Structural characterisation and cell viability of a spray dried probiotic yoghurt produced with goats’ milk and Bifidobacterium animalis subsp. lactis (BI-07). Int Dairy J. 2014;39(1):71–7. doi:https://doi.org/10.1016/j.idairyj.2014.05.008

Koc B, Yilmazer MS, Balkır P, Ertekin FK. Spray drying of yogurt: Optimization of process conditions for improving viability and other quality attributes. Dry Technol. 2010;28(4):495–507. doi:https://doi.org/10.1080/07373931003613809

Anal AK, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol. 2007, 18(5):240–51. doi:https://doi.org/10.1016/j.tifs.2007.01.004

Hayaloglu AA, Karabulut I, Alpaslan M, Kelbaliyev G. Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray-dryer. J Food Eng. 2007;78(1):109–17. doi:https://doi.org/10.1016/j.jfoodeng.2005.09.006

Santos GD, Nogueira RI, Rosenthal A. Powdered yoghurt produced by spray drying and freeze drying: A review. Brazilian J Food Technol. 2018;21:e2016127. doi:http://dx.doi.org/10.1590/1981-6723.12716

Seth D, Mishra HN, Deka SC. Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions. Int J Food Prop. 2017;20(7):1603–11. doi:https://doi.org/10.1080/10942912.2016.1214965

(AOAC) ASFTAM 15°. AMERICAN SOCIETY FOR TESTING AND MATERIALS (AOAC). 1998. doi: https://doi.org/10.1038/203565a0

Venir E, Del Torre M, Stecchini ML, Maltini E, Di Nardo P. Preparation of freeze-dried yoghurt as a space food. J food Eng. 2007;80(2):402–407. doi:https://doi.org/10.1016/j.jfoodeng.2006.02.030

Mu B, Xu H, Li W, Xu L, Yang Y. Spinnability and rheological properties of globular soy protein solution. Food Hydrocoll. 2019;90:443–51. doi: https://doi.org/10.1016/j.foodhyd.2018.12.049

Caillard R, Remondetto GE, Mateescu MA, Subirade M. Characterization of amino cross-linked soy protein hydrogels. J Food Sci. 2008;73(5):283–91. doi: https://doi.org/10.1111/j.1750-3841.2008.00780.x

Steffe JF. Rheological methods in food process engineering. Freeman press. 1996. 317-339 p.

Ramirez-Navas JS, Rodriguez de Stouvenel A. Characterization of Colombian quesillo cheese by spectrocolorimetry. Vitae. 2012;19(2):178–85.

NTC5034. Microbiología de Alimentos y Alimentos para animales. Método Horizontal para el recuento de Bacterias mesofílicas de ácido láctico. Técnica de recuento de colonias a 30°C. Bogotá: Instituto Colombiano de Normas Técnicas y de Certificación (ICONTEC); 2002.

Arltoft D, Madsen F, Ipsen R. Screening of probes for specific localisation of polysaccharides. Food Hydrocoll. 2007;21(7):1062–71. doi:https://doi.org/10.1016/j.foodhyd.2006.07.020

Carvalho MJ, Perez-Palacios T, Ruiz-Carrascal J. Physico-chemical and sensory characteristics of freeze-dried and air-dehydrated yogurt foam. LWT. 2017;80:328–34. doi:https://doi.org/10.1016/j.lwt.2017.02.039

Song L, Aryana K. Reconstituted yogurt from yogurt cultured milk powder mix has better overall characteristics than reconstituted yogurt from commercial yogurt powder. J Dairy Sci. 2014;97(10):6007–15. doi:https://doi.org/10.3168/jds.2014-8181

Ramirez-Figueroa E, Salgado-Cervantes MA, Rodriguez GC, Garcia HS. Addition of hydrocolloids to improve the functionality of spray dried yoghurt. Milchwissenschaft. 2002;57(2):87–9.

Sakin-Yilmazer M, Koç B, Balkir P, Kaymak-Ertekin F. Rheological behavior of reconstituted yoghurt powder—An optimization study. Powder Technol. 2014;266:433–9. doi:https://doi.org/10.1016/j.powtec.2014.06.060

Kumar P, Mishra HN. Yoghurt Powder—A Review of Process Technology, Storage and Utilization. Food Bioprod Process. 2004;82(2):133–42. doi:https://doi.org/10.1205/0960308041614918

Rascón-Díaz MP, Tejero JM, Mendoza-Garcia PG, García HS, Salgado-Cervantes MA. Spray Drying Yogurt Incorporating Hydrocolloids: Structural Analysis, Acetaldehyde Content, Viable Bacteria, and Rheological Properties. Food Bioprocess Technol. 2012;5(2):560–7. doi: https://doi.org/10.1007/s11947-009-0312-x

Sandoval-Castilla O, Lobato-Calleros C, Aguirre-Mandujano E, Vernon-Carter EJ. Microstructure and texture of yogurt as influenced by fat replacers. Int Dairy J. 2004;14(2):151–9. doi:https://doi.org/10.1016/S0958-6946(03)00166-3

Yuliarti O, Mei KH, Kam Xue Ting Z, Yi KY. Influence of combination carboxymethylcellulose and pectin on the stability of acidified milk drinks. Food Hydrocoll. 2019;89:216–23. doi:https://doi.org/10.1016/j.foodhyd.2018.10.040

Tuinier R, Rolin C, de Kruif CG. Electrosorption of Pectin onto Casein Micelles. Biomacromolecules. 2002;3(3):632–8. doi: https://doi.org/10.1021/bm025530x

Schmidt KA, Smith DE. Milk Reactivity of Gum and Milk Protein Solutions1. J Dairy Sci. 1992;75(12):3290–5. doi:https://doi.org/10.3168/jds.S0022-0302(92)78104-1

Nguyen PTM, Kravchuk O, Bhandari B, Prakash S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017;72:90–104. doi:https://doi.org/10.1016/j.foodhyd.2017.05.035

Sanz T, Salvador A, Jiménez A, Fiszman SM. Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. Eur Food Res Technol. 2008;227(5):1515–21. doi: https://doi.org/10.1007/s00217-008-0874-2

Nan C, Dong X. Towards a maximal cell survival in convective thermal drying processes. Food Res Int. 2011;44:1127–49. https://doi.org/10.1016/j.foodres.2011.03.053

Morales FJ, van Boekel MAJS. A Study on Advanced Maillard Reaction in Heated Casein/Sugar Solutions: Colour Formation. Int Dairy J. 1998;8(10):907–15. doi:https://doi.org/10.1016/S0958-6946(99)00014-X

Izadi M, Eskandari MH, Niakousari M, Shekarforoush S, Hanifpour MA, Izadi Z. Optimisation of a pilot-scale spray drying process for probiotic yoghurt, using response surface methodology. Int J Dairy Technol. 2014;67(2):211–9. doi: https://doi.org/10.1111/1471-0307.12108

Erbay Z, Koca N, Kaymak-Ertekin F, Ucuncu M. Optimization of spray drying process in cheese powder production. Food Bioprod Process. 2015;93:156–65. doi:https://doi.org/10.1016/j.fbp.2013.12.008

Tontul İ, Ergin F, Eroğlu E, Küçükçetin A, Topuz A. Physical and microbiological properties of yoghurt powder produced by refractance window drying. Int Dairy J. 2018;85:169–76. doi:https://doi.org/10.1016/j.idairyj.2018.06.002

How to Cite
Monsalve-Atencio R., Sanchez K., Chica J., Camaño J., Saldarriaga J., & Quintero-Quiroz J. (2021). Effect of the drying method and texture improvers on reconstitution behavior of yogurt powder: physical and microbiological properties. Vitae, 28(2). https://doi.org/10.17533/udea.vitae.v28n2a344985
Foods: Science, Engineering and Technology