A Spatial Proximity Model to Define Monitoring Sites in Urban Air Quality Networks

Authors

  • Libardo A. Londoño Ciro University of Antioquia
  • Julio E. Cañón Barriga University of Antioquia
  • Julián D. Giraldo Ocampo University of San Buenaventura

DOI:

https://doi.org/10.17533/udea.rfnsp.v35n1a12

Keywords:

spatial proximity model, air pollution

Abstract

This paper presents a model of spatial proximity to roads, industrial uses of land and green areas, to determine concentrations of particulate matter and locate air quality monitoring sites in urban areas. The model uses monthly average concentration of PM10 (µgm/m3) measured at nine monitoring sites in the city of Medellin between January 2003 and December 2008. With these data, monthly maps were calculated using geostatistical interpolation methods with J-Bessel semivariograms to characterize the concentration of PM10. Three factors of spatial proximity (to main roads, industries and green areas) were calculated along with one combined factor. They were then multiplied by the concentration maps. With this result, a network of monitoring sites was proposed for Medellín. The Spatial analysis techniques and the proximity model allow for the assessment of the distribution of the contaminant on the territory, highlighting the effect of intersections and industrial areas on high concentrations and the dampening effect of green areas. This work may complement the existing regulatory provisions in Colombia for locating critical monitoring sites of the air quality surveillance systems.

|Abstract
= 369 veces | PDF (ESPAÑOL (ESPAÑA))
= 213 veces| | HTML (ESPAÑOL (ESPAÑA))
= 55 veces| | CARTA SOMETIMIENTO ARTICULO (ESPAÑOL (ESPAÑA))
= 0 veces|

Downloads

Author Biographies

Libardo A. Londoño Ciro, University of Antioquia

Candidate for a PhD in Engineering, Petroleum Engineering. University of Antioquia, Colombia.

Julio E. Cañón Barriga, University of Antioquia

Doctor in Hydrology, Civil Engineer. University of Antioquia, Colombia.

Julián D. Giraldo Ocampo, University of San Buenaventura

Geographic Information Systems Specialist, Systems Engineer. University of San Buenaventura, Colombia.

References

Elbir T. Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey. Atmospheric Environment 2003; 37: 2149 –2157.

Marcon A, Pesce G, Girardi P, Marchetti P, Blengio G, Sappadina S, et al. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy. International Journal of Hygiene and Environmental Health 2014; 217 (2-3): 386-391.

García-Pérez J, Morales-Piga A, Gómez J, Gómez-Barroso D, Tamayo-Uria I, Pardo Romaguera P, et al. Association between residential proximity to environmental pollution sources and childhood renal tumors. Environmental Research 2016; 147: 405-414.

Gulliver J, Briggs D. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment. Science of the Total Environment 2011a; 409: 2419-2429.

Eeftens M, Beekhuizen J, Beelen R, Wang M, Vermeulen R, Brunekreef B, et al. Quantifying urban street configuration for improvements in air pollution models. Atmospheric Environment 2013; 72: 1-9.

Dionisio K, Rooney M, Arku R, Friedman A, Hughes A, Vallarino J, et al. Within-neighborhood patterns and sources of particle pollution: mobile monitoring and geographic information system analysis in four communities in Accra, Ghana. Environmet Health Perspect 2010; 118: 607–13.

Wang Y, Li J, Cheng X, Lun X, Sun D, Wang X. Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China. Journal of Environmental Sciences 2014; 26 (1): 197-204.

Clougherty J, Kheirbek I, Eisl H, Ross Z, Pezeshki G, Gorczynski J, et al. Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS). Journal of Exposure Science and Environmental Epidemiology 2013; 23: 232-240.

Nejadkoorki F, Nicholson K, Hadad, K. The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach. Environmental Monitoring and Assessment 2011; 172 (1-4): 215-223.

Jerrett M, Potoglou D, Arain A, Kanaroglou P, Sahsuvaroglu T, Beckerman B, et al. A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Analysis and Environmental Epidemiology 2005; 15: 185–204.

Ministerio de Ambiente Vivienda y Desarrollo Territorial. Protocolo para el monitoreo y seguimiento de la calidad del aire. Bogotá: página 57; 2007 [acceso 11 de abril de 2016]. Disponible en: https://www.cortolima.gov.co/sites/default/files/images/stories/calidadAire/protocolo_monitoreo_calidad_aire.pdf.

Laboratorio de Calidad del Aire. Universidad Nacional de Colombia Sede Medellín, Facultad de Minas; 2015.

Londoño L, Cañón J, Villada R, López L. Caracterización espacial de PM10 en la ciudad de Medellín mediante modelos geoestadísticos. Revista de Ingenierías USBMED [revista en Internet] 2015 julio-diciembre. [Acceso 11 de abril de 2016]; 6 (2): 26-35. Disponible en: http://revistas.usb.edu.co/index.php/IngUSBmed/article/view/1728

Chen X, Pei T, Zhou Z, Teng M, He L, Luo M, et al. Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): A street scale investigation in Wuhan, China. Urban Forestry & Urban Greening 2015; 14(2): 354-360.

Saaty, T. Analytic Hierarchy Process. In: Gass S, Fu M. (eds) Encyclopedia of Operations Research and Management Science. US: Springer; 2013. p. 52-64.

Published

2017-01-20

How to Cite

1.
Londoño Ciro LA, Cañón Barriga JE, Giraldo Ocampo JD. A Spatial Proximity Model to Define Monitoring Sites in Urban Air Quality Networks. Rev. Fac. Nac. Salud Pública [Internet]. 2017 Jan. 20 [cited 2025 Mar. 9];35(1):111-22. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/26424

Issue

Section

Revisión sistemática

Similar Articles

You may also start an advanced similarity search for this article.