A Probabilistic Analysis with Random Walks of the Number of People Living with HIV Worldwide

Authors

DOI:

https://doi.org/10.17533/udea.rfnsp.v36n1a04

Keywords:

HIV, acquired immunodeficiency syndrome, probability, epidemics, long-term HIV survivors

Abstract

Introduction: This is a study of the yearly dynamic of the HIV epidemic based on random walks has proven to be useful to take this highly variable phenomenon to a predictable behavior. Objective: Predict the behavior of the dynamic of the number of people living with HIV via a probabilistic random walk. Methodology: The yearly value of people living with HIV worldwide was analyzed from 1990 to 2009, based
on probability spaces produced with a probabilistic random walk, and then, developed the prediction of the yearly value of people living with HIV for 2010, 2011 and 2012. Results: The yearly volume of people living with HIV was predicted with a 98.95% success rate in 2010, 98.82% in 2011 and 98.99% for the 2012 prediction.
Conclusions: Mathematical orders were established based on the probabilistic random walk, establishing practically deterministic predictions of the number of people living with HIV which could be useful for public health decisions and to evaluate interventions.
|Abstract
= 559 veces | PDF (ESPAÑOL (ESPAÑA))
= 184 veces|

Downloads

Download data is not yet available.

Author Biographies

Javier Oswaldo Rodríguez velásquez, Country Clinic Research Center

Medical Doctor (MD). Director of the Insight Research Group. Country Clinic Research Center. Colombia.

Diego Iván Oliveros Acosta, Institución Universitaria Politécnico Grancolombiano

M.Sc. in Engineering. Institución Universitaria Politécnico Grancolombiano. Software Construction Line. Systems Engineering and Telecommunications Department. Faculty of Engineering and Basic Sciences. Colombia.

Maria Yolanda Soracipa Muñoz, National Open and Distance University

Research Group Insight. Teaching School of Basic Sciences, Technology and Engineering (ECBTI). National Open and Distance University (UNAD). Colombia.

Luz Mery Bernal, National Open and Distance University

Director of the Bioinnova group. Professor at the School of Health Sciences (ECISALUD). National Open and Distance University (UNAD). Colombia.

Sandra Catalina Correa Herrera, Country Clinic Research Center

Researcher of the Insight Group. Country Clinic Research Center. Bogotá. Colombia.

Laura Ibeth Abrahem Martínez, Country Clinic Research Center

Researcher of the Insight Group. Country Clinic Research Center. Bogotá. Colombia.

Luz Azucena Flórez Preciado, National Open and Distance University

Engineer. Teacher at the School of Basic Sciences, Technology and Engineering (ECBTI). National Open and Distance University (UNAD). Bogotá, Colombia.

Dharma Rodríguez Correa, Country Clinic Research Center

Researcher of the Insight Group. Country Clinic Research Center. Bogotá. Colombia.

Yoshua Bahamon Rodríguez, National Open and Distance University

Engineer. Teacher at the School of Basic Sciences, Technology and Engineering (ECBTI). National Open and Distance University (UNAD). Bogota Colombia.

Oscar Mauricio Valero, National Open and Distance University

Medical Doctor (MD). M.Sc in Infections and Health in the Tropics. Epidemiologist. Teacher at the School of Health Sciences ECISALUD. National Open and Distance University UNAD. Colombia.

References

(1). Laplace Pierre. Ensayo filosófico sobre las probabilidades. Barcelona: Altaya; 1995.

(2). Feynman RP, Leighton RB, Sands M. Probabilidad. En: Feynman RP, Leighton RB, Sands M. Física. Vol. 1. Wilmington: Addison-Wesley Iberoamericana, S. A; 1964. Págs. 6-1, 6-16.

(3). Mood A, Graybill F, Boes D. Introduction to the theory of statistics. 3a Ed. Bogotá: McGraw-Hill; 1974.

(4). Rodríguez J, Correa C. Predicción temporal de la epidemia de dengue en colombia: dinámica probabilista de la epidemia. Rev salud pública. 2009; 11(3):443-453.

(5). Van Kampen N.G. Stochastic Processes in Physics and Chemistry. North-Holland: Personal Library; 1992.

(6). Redner S. A Guide to First-Passage Process. USA: Cambridge University Press;2001.

(7). Goel N, Richter-Dyn N. Stochastic Models in Biology. New York: Academic Press; 1974.

(8). Doi M, Edwards S. The Theory of Polymer Dynamics. USA: Clarendon Press; 1988.

(9). De Gennes P. Scaling Concepts in Polymer Physics. Ithaca and London: Cornell University Press; 1979.

(10). Risken H. The Fokker–Planck Equation. Berlin: Springer; 1984.

(11). Weiss G. Aspects and Applications of the Random Walk, Random Materials and Processes. New York: North-Holland; 1994.

(12). Maya C. Las caminatas aleatorias no son de este mundo. Teoría y revisión bibliográfica sobre evidencia empírica. Rev Universidad EAFIT. 2005; 41(138):65-83.

(13). Situación de la epidemia de SIDA 2007. [Internet]. Programa Conjunto de las Naciones Unidas sobre el VIH/Sida (ONUSIDA) y Organización Mundial de la Salud (OMS) 2007. [Actualizado 2018; citado 10 ago 2017]. Disponible en: www.UNAIDS.org

(14). Report on the Global AIDS epidemy, 2006. [Internet]. Anexo 1: Country Profiles. Joint United Nations Programme on HIV/AIDS (UNAIDS) 2006. Pag. 480. [Actualizado 2018; citado 12 jun 2017]. Disponible en: www.UNAIDS.org

(15). Rodríguez J, Prieto S, Correa C, López R, Flórez M, Alarcón M, et al. Metodología diagnóstica de la dinámica cardiaca neonatal mediante la ocupación espacial del atractor caótico. Arch Med (Manizales) 2015; 15(2):305-319.

(16). Rodríguez J, Prieto S, Correa C, Mendoza F, Weisz G, Soracipa M, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf – Mandelbrot law. Journal of Modern of Physics. 2015; 6(13):1881-1888.

(17). Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J. Med. Med. Sci. 2013; 4(8):370-381.

(18). Rodríguez J, Prieto S, Domínguez D, Correa C, Melo M, Pardo J, et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev. Fac. Med. 2014; 62(4):539-46.

(19). Rodríguez J. Dynamical systems applied to dynamic variables of patients from the Intensive Care Unit (ICU). Physical and mathematical Mortality predictions on ICU. J. Med. Med. Sci. 2015; 6(8):102-108.

(20). Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, Coordinador. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Tomo 1, 1a ed. Buenos Aires: Comunidad Editora Latinoamericana; 2016. p. 315-44.

(21). Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública 2010; 27(3):211-8

(22). Rodríguez J. Dinámica probabilista temporal de la epidemia de malaria en Colombia. Rev. Fac. Med. 2009; 17(2):214-221.

(23). Rodríguez J, Vitery S, Puerta G, Muñoz D, Rojas I, Pinilla L, et al. Dinámica probabilista temporal de la epidemia de dengue en Colombia. Rev Cubana Hig Epidemiol. 2011; 49(1):74-83.

(24). Rodríguez J, Prieto S, Correa C, Pérez C, Soracipa M. Dinámica de la epidemia de malaria en Colombia: predicción probabilística temporal. Rev. Salud pública. 2017;91-100.

(25). Rodríguez J, Prieto S, Fajardo E, Correa C, López F, Castro J, et al. Caminata al azar predictiva de la dinámica de obesidad: predicciones de obesidad y sobrepeso en la población infantil de Colombia y de variación peso/talla y peso/edad en México. Rev Med. 2013; 21(2):18-29.

(26). Rodríguez J, Prieto S, Fajardo E, Correa C, López F, Castro J, et al. Predicción de la dinámica temporal de egresos hospitalarios por obesidad en niños y jóvenes en Estados Unidos. Rev Chil Nutr 2015; 42(4):345-350.

(27). UNAIDS. AIDS info. [Internet]. Number of people living with HIV. [Actualizado 2018; citado 2 mar 2017]. Disponible en: http://aidsinfo.unaids.org/

(28). Löytönen M, Arbona SI. Soc Sci Med. Forecasting the AIDS epidemic in Puerto Rico. 1996; 42(7):997-1010.

(29). Ding Y Computing back-calculation estimates of AIDS epidemic. Stat Med. 1995; 14(14):1505-12.

(30). Stillman G, Stacey K. Designing an applications task for Mathematical Methods using AIDS data. In Vale C, Roumeliotis J, Horwood J (Eds). Valuing Mathematics in Society. Proceedings of the 39th Annual Conference of the MAV. Melbourne: Mathematical Association of Victoria; 2002. Págs. 470-480.

(31). Fazekas de St G, Solomon, P. Short-term prediction of the AIDS epidemic using empirical models. In Solomon P, Fazekas de St Groth C., Wilson S (Eds.) Projections of acquired immune deficiency syndrome in Australia using data to the end of September 1989. Australia: Canberra, National Centre for Epidemiology and Population Health, Australian National University; 1990. Págs. 97-138.

(32). Rodríguez J, Prieto S, Correa C, Mora J, Bravo J, Soracipa Y, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Medical Physics. BMC Medical Physics. 2013; 13:3.

(33). Rodríguez J, Bernal P, Prieto P, Correa C, Álvarez L, Pinilla L, et al. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad, combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Archivos de alergia e inmunología clínica. 2013; 44(1): 7-14.

Published

2018-03-14

How to Cite

1.
Rodríguez velásquez JO, Oliveros Acosta DI, Soracipa Muñoz MY, Bernal LM, Correa Herrera SC, Abrahem Martínez LI, Flórez Preciado LA, Rodríguez Correa D, Bahamon Rodríguez Y, Valero OM. A Probabilistic Analysis with Random Walks of the Number of People Living with HIV Worldwide. Rev. Fac. Nac. Salud Pública [Internet]. 2018 Mar. 14 [cited 2025 Jan. 30];36(1):27-33. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/328339

Issue

Section

Modelado matemático y simulación