Estudio de chorros diesel usando mecánica de fluidos computacional
DOI:
https://doi.org/10.17533/udea.redin.15924Palabras clave:
Chorros de combustible, atomización, vaporización, simulaciónResumen
In this work a numerical model for simulating the main sub-processes occurring in a fuel spray was developed using an open-source CFD code. The model was validated by comparing predicted dimethyl ether (DME) spray tip penetrations with experimental data reported in literature and some results obtained from empirical correlations. Once validated, the model was used for evaluating the effect of fuel type, injection pressure and ambient gas pressure on spray tip penetration, Sauter mean diameter (SMD) and evaporated fuel mass. Fuel properties significantly affected the atomization and evaporation processes and in a lesser extent spray fuel penetration. Regarding the injection and ambient gas pressures, the SMD increased with viscosity and surface tension while the evaporation rate increased with fuel volatility. At low ambient gas pressures the evaporation process was highly favored as well as the spray penetration. For both fuels, as injection pressure increased the SMD decreased and the evaporation rate increased.
Descargas
Citas
J. B. Heywood, Internal Combustion Engine Fundamentals. Ed. McGraw-Hill. México. 1998. pp. 596-598.
J. R. Agudelo. Motores diesel turboalimentados en régimen transitorio. Un análisis teórico-experimental. Ed. Universidad de Antioquia. Medellín. 2002. pp. 77-83.
R. D. Reitz. “Atomization and droplet breakup, collision/coalescence and wall impingement,” Multiphase Science and Technology. Vol. 15. 2003. pp. 343-348. DOI: https://doi.org/10.1615/MultScienTechn.v15.i1-4.280
A. D. Gosman. “State of the art of multi-dimensional modeling of engine reacting flows,” Oil and gas science and technology – Rev. IFP. Vol. 54. 1999. pp. 149-159. DOI: https://doi.org/10.2516/ogst:1999009
J. V. Pastor, E. Encabo, S. Ruiz. “New modeling approach for fast online calculations in sprays”. SAE paper, Vol. 2000-01-0287. 2000. pp. 1-9. DOI: https://doi.org/10.4271/2000-01-0287
B. Dillies, A. Ducamin, L. Lebrere, F. Neveu. “Direct injection diesel engine simulation: a combined numerical and experimental approach from aerodynamics to combustion”. SAE paper 1997-0880. 1997. pp. 23-48. DOI: https://doi.org/10.4271/970880
C. Chryssakis, D. N. Assanis, C. Bae. “Development and validation of a comprehensive CFD model of diesel spray atomization accounting for high Weber numbers,” SAE paper 2006-01-1546. 2006. pp. 1-13. DOI: https://doi.org/10.4271/2006-01-1546
B. Kelg. “Numerical analysis of injection characteristics using biodiesel fuel”. Fuel. Vol. 85. 2006. pp. 2377-2387. DOI: https://doi.org/10.1016/j.fuel.2006.05.009
F. V. Tinaut, A. Melgar, B. Giménez. “A model of atomization of a transient evaporative spray”. SAE paper 1999-01-0913. pp.1-10. DOI: https://doi.org/10.4271/1999-01-0913
G. Stiesch. Modeling engine spray and combustion processes. Ed. Springer-Verlag N.Y. Inc. 2003. pp 141-149. DOI: https://doi.org/10.1007/978-3-662-08790-9
B. Reveille, A. Kleemann, S. Jay. “Towards even cleaner diesel engines: Contribution of 3D CFD tools”. Oil and gas science and technology – Rev. IFP. Vol. 61. 2006. pp. 43-56. DOI: https://doi.org/10.2516/ogst:2006003x
Y. Jeong, Y. Quian, S. Campbell, K. Rhee. “Investigation of a direct injection diesel engine by high-speed spectral IR imaging and KIVA-II”. SAE paper 941732. 1994. pp. 1-11. DOI: https://doi.org/10.4271/941732
B. Dillies, B. Cousyn, A. Ducamin. “Indirect Injection Diesel Engine Combustion Calculations: Validation and Industrial use of the KIVA-II code”. 26th FISITA Congress. Praga, 1996.
K. Tsao, Y. Dong, Y. Xu, “Investigation of flow filed and fuel spray in a direct injection diesel engine via KIVA-II program,” SAE paper. 961616. 1990. pp. 1-11. DOI: https://doi.org/10.4271/901616
W. Yuan, A. C. Hansen, M. E. Tat, J. H. Van Gerpen, Z. Tan. “Spray, ignition and combustion modeling of biodiesel fuels for investigating NOX emissions”. Transactions of the ASAE. Vol. 48. 2005. pp. 933-939. DOI: https://doi.org/10.13031/2013.18498
K. Yamane, A. Ueta, Y. Shimamoto. “Influence of Physical and Chemical Properties of Biodiesel Fuel on Injection, Combustion and Exhaust Emission Characteristics in a DI-CI Engine”. The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001). Nagoya. 2001. pp. 402-409.
G. Pizza, Y. M. Wright, G. Weisser, K. Boulouchos. “Evaporating and non-evaporating diesel spray simulation: comparison between the ETAB and wave breakup model”. International Journal of Vehicle Design. Vol. 45. 2007. pp. 80 - 99. DOI: https://doi.org/10.1504/IJVD.2007.013672
C. Baumgarten, G. P. Merker. “Modeling primary break-up in high-pressure diesel injection,” Motortechnische Zeitschrift (MTZ worldwide). Vol. 65. 2004. pp. 21-24. DOI: https://doi.org/10.1007/BF03227667
F. X. Tanner. “Liquid jet atomization and droplet breakup modeling of non-evaporative diesel fuel sprays”. SAE paper 1997-0050. pp. 67-80. DOI: https://doi.org/10.4271/970050
Z. Zheng, M. Yao. “Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel,” Fuel. Vol. 88. 2008. pp. 354-365. DOI: https://doi.org/10.1016/j.fuel.2008.09.002
E. M. Fisher, W. J. Pitz, H. J. Curran, C. K. Westbrook. “Detailed chemical kinetic mechanism for combustion of oxygenated fuels”. Proceedings of the combustion institute. Vol. 28. 2000. pp. 1579-1586. DOI: https://doi.org/10.1016/S0082-0784(00)80555-X
S. Gail, S. M. Sarathy, M. J. Thomson, P. Dievart, P. Dagaut. “Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)- 2-butenoate and methyl butanoate”. Combustion and Flame. Vol. 155. 2008. pp 635-650. DOI: https://doi.org/10.1016/j.combustflame.2008.04.007
P. F. Flyn, J. E. Dec, C. K. Westbrook. “Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation”. SAE paper 1999-01-0509. DOI: https://doi.org/10.4271/1999-01-0509
J. S. Matos, J. L. Trenzado, E. González, R. Alcalde. “Volumetric properties and viscosities of the methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in the temperatura range from 283.15 to 313.15 K”. Fluid Phase Equilibria. Vol. 186. 2001. pp 207-234. DOI: https://doi.org/10.1016/S0378-3812(01)00511-8
B. E. Poling, J. M. Praustniz, J. P. O’Connell. The properties of gases and liquids. Ed. McGraw-Hill. New York. 2001. pp 278-280.
P. Winget, D. M. Dolney, D. J. Giesen, C. J. Cramer, D. G. Truhlar. Minnesota Solvent Descriptor Database. Department of Chemistry and Supercomputer Institute, University of Minnesota. Minneapolis. 1999.
H. K. Suh, C. S. Lee. “Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine”. Fuel. 2007. pp. 1-8.
H. Hiroyasu, M. Arai. “Fuel spray penetration and spray angle in diesel spray”. Transactions Journal SAE. Vol. 21. 1980. pp. 5-11.
S. S. Sazhin, G. Geng, M. R. Heilcal, “A model for fuel spray penetration”. Fuel. Vol. 80. 2001. pp. 2171-2180. DOI: https://doi.org/10.1016/S0016-2361(01)00098-9
D. L. Siebers. “Scaling liquid-phase fuel penetration in diesel sprays base don mixing- limited vaporization. SAE paper 1999-01-0528. pp. 1-24. DOI: https://doi.org/10.4271/1999-01-0528
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.