Decoupled control for internal combustion engines research test beds


  • José David López Universidad Nacional de Colombia - Sede Medellín
  • Jairo José Espinosa Universidad Nacional de Colombia - Sede Medellín
  • John Agudelo Universidad de Antioquia


Engine test bed, automation, transfer function, decoupled controller


This article presents a solid and robust automation model which has been developed and implemented in two different research engine test beds which were instrumented, one for diesel and the other one for spark ignition engines. The model, programmed in Matlab, is based on transfer functions with a decoupled (two single input single output systems) independent proportional and integral action controller that allows setting the desired engine speed and torque under stationary operation conditions. It was implemented in a Freescale HC08 family microcontroller external to the PC in order to avoid the risk of losing control during undesirable communication delays on the computer. The model has been validated in a wide range of engine operating modes, from low to high speeds and loads showing a good response. The first order transfer functions with delay have proven to be a good approximation even during the nonlinearities caused by turbocharger and electronic control unit incorporated in the engines. This low cost automation system has been tested for the last three years in a university engine laboratory showing a good performance.
= 24 veces | PDF (ESPAÑOL (ESPAÑA))
= 12 veces|


Download data is not yet available.


B. J. Bunker, M. A. Franchek, B. E Thomason. “Robust multivariable control of an engine dynamometer

system”. IEEE transactions on control systems technology. Vol. 5. 1997. pp. 189-199.

M. Plint, A. Martyr. Engine testing: Theory and practice. 3rd ed. Ed. Oxford: Butterworth – Heinemann. Oxford. 1997. pp. 45-190.

J. B. Heywood. Internal combustion engine fundamentals. 2nd ed. Ed. Mc.Graw Hill. New York. 1988. pp. 435-472.

W. F. Powers. “Internal Combustion Engine control system research at FORD”. Memories of the 20th IEEE Conf. on Decision and Control. San Francisco (USA). 1981. pp. 1447-1452.

L. A. Del Portillo, F.V. Tinaut, A.M. Bachiller, B. Giménez. “Validación de un modelo fenomenológico para el estudio de motores diesel de inyección directa”. Octavo congreso iberoamericano de ingeniería mecánica. Cuzco. 23 - 25 de octubre de 2007. Código 1125. pp. 234-246.

K. Lee, K. Park. “Optimal robust control of a contactless brake system using an eddy current”. Mechatronics. Vol. 9. 1999. pp. 615 - 631.

M. I. Gonzales. “Experiments with eddy currents the eddy current brake”. European Journal of Physics. Vol. 25. 2004. pp 463 - 468.

A. H. Gosline, G. Campion, V. Hayward. “On the use of eddy current brakes as tunable, fast turn-on viscous dampers for haptic rendering”. Proc. Eurohaptics. Paris. 2006. pp 229 - 234.

S. Anwar. “A parametric model of an eddy current electric machine for automotive braking applications”. IEEE transactions on control systems technology. Vol. 12. 2004. pp 422-427.

H. G. Hopkins, R. H. Borcherts, “Discrete time modeling of the torque response of a spark-ignited fuel-injected engine”. Applications of adaptive control. Ed. Academic Press. New York. 1980. pp. 491–508.

R. L. Morris, R. H. Borcherts, M. V. Warlick, H. G. Hopkins, “Spark ignition engine model building-an identification approach to throttle-torque response,” Workshop on Adaptive Control. Detroit (USA). 1981. pp 235-240

J. Cook, B. Powell. “Modeling of an internal combustion engine for control analysis”. IEEE power control systems magazine. Vol. 8. 1988. pp. 20-26.

B. Kuo. Automatic control systems. 6th ed. Ed. Prentice Hall. New Jersey. 1995. pp 77-117.

R C. Dorf, R. H. Bishop. Modern Control Systems. 10th ed. Ed. Pearson Prentice Hall. Upper Saddle River. 2008. pp. 41-142.

C. T. Chen. Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods. Saunders College Publishing. Philadelphia. 1993. pp. 93-115.

ISUZU. Technical manual of the diesel engine ISUZU 4JA1. Tokyo. 1991. pp 65-67.

J. G. Ziegler, N. B. Nichols “Optimum settings for automatic controllers”. Trans. ASME. Vol. 64. 1942. pp. 759-768.

J. D. López. ICE test bed automation. Master thesis (available in Spanish). Universidad de Antioquia. 2009. pp. 21-61.

J. J. Espinosa. Control lineal de sistemas multivariables. Ed. Corporación Universitaria de Ibagué. Ibagué. 2003. pp 25-38.

P. Benjumea, J. Agudelo, A. Agudelo, “Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine”, Fuel. Vol.88. 2009. pp. 725 - 731.

J Agudelo, P. Benjumea, A. Villegas, “Evaluation of nitrogen oxide emissions and smoke opacity in a HSDI diesel engine fuelled with palm oil biodiesel”. Rev. Fac. Ing. Univ. Antioquia. Vol. 51. 2010. pp. 62-71.

J. Agudelo, E. Gutiérrez, P. Benjumea, “Experimental combustion analysis of a HSDI diesel engine fuelled with palm oil biodiesel-diesel fuel blends. Dyna. Vol. 159. 2009. 103-113.

J Agudelo, A. Agudelo, J. Pérez, “Energy and exergy analysis of a light duty diesel engine operating at

different altitudes”. Rev. Fac. Ing. Univ. Antioquia. Vol. 48. 2009. pp. 45-54.

J. Agudelo, P. Benjumea, A. Agudelo. “Diagnóstico exergético del proceso de combustión en un motor Diesel”. Rev. Fac. Ing. Univ. Antioquia. Vol. 45. 2008. pp. 41-53.



How to Cite

López, J. D., Espinosa, J. J., & Agudelo, J. (2012). Decoupled control for internal combustion engines research test beds. Revista Facultad De Ingeniería Universidad De Antioquia, (59), 23–31. Retrieved from

Most read articles by the same author(s)

1 2 > >>