Estudio de chorros diesel usando mecánica de fluidos computacional

Autores/as

  • John Agudelo Universidad de Antioquia
  • Andrés Agudelo Universidad de Antioquia
  • Pedro Benjumea Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.15924

Palabras clave:

Chorros de combustible, atomización, vaporización, simulación

Resumen

In this work a numerical model for simulating the main sub-processes occurring in a fuel spray was developed using an open-source CFD code. The model was validated by comparing predicted dimethyl ether (DME) spray tip penetrations with experimental data reported in literature and some results obtained from empirical correlations. Once validated, the model was used for evaluating the effect of fuel type, injection pressure and ambient gas pressure on spray tip penetration, Sauter mean diameter (SMD) and evaporated fuel mass. Fuel properties significantly affected the atomization and evaporation processes and in a lesser extent spray fuel penetration. Regarding the injection and ambient gas pressures, the SMD increased with viscosity and surface tension while the evaporation rate increased with fuel volatility. At low ambient gas pressures the evaporation process was highly favored as well as the spray penetration. For both fuels, as injection pressure increased the SMD decreased and the evaporation rate increased.

|Resumen
= 266 veces | PDF
= 83 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

John Agudelo, Universidad de Antioquia

Group of Efficient Energy Management – GIMEL – Engineering Faculty

Andrés Agudelo, Universidad de Antioquia

Group of Efficient Energy Management – GIMEL – Engineering Faculty

Pedro Benjumea, Universidad Nacional de Colombia

Alternative Fuels Group, Energy Institute, Faculty of Mines

Citas

J. B. Heywood, Internal Combustion Engine Fundamentals. Ed. McGraw-Hill. México. 1998. pp. 596-598.

J. R. Agudelo. Motores diesel turboalimentados en régimen transitorio. Un análisis teórico-experimental. Ed. Universidad de Antioquia. Medellín. 2002. pp. 77-83.

R. D. Reitz. “Atomization and droplet breakup, collision/coalescence and wall impingement,” Multiphase Science and Technology. Vol. 15. 2003. pp. 343-348. DOI: https://doi.org/10.1615/MultScienTechn.v15.i1-4.280

A. D. Gosman. “State of the art of multi-dimensional modeling of engine reacting flows,” Oil and gas science and technology – Rev. IFP. Vol. 54. 1999. pp. 149-159. DOI: https://doi.org/10.2516/ogst:1999009

J. V. Pastor, E. Encabo, S. Ruiz. “New modeling approach for fast online calculations in sprays”. SAE paper, Vol. 2000-01-0287. 2000. pp. 1-9. DOI: https://doi.org/10.4271/2000-01-0287

B. Dillies, A. Ducamin, L. Lebrere, F. Neveu. “Direct injection diesel engine simulation: a combined numerical and experimental approach from aerodynamics to combustion”. SAE paper 1997-0880. 1997. pp. 23-48. DOI: https://doi.org/10.4271/970880

C. Chryssakis, D. N. Assanis, C. Bae. “Development and validation of a comprehensive CFD model of diesel spray atomization accounting for high Weber numbers,” SAE paper 2006-01-1546. 2006. pp. 1-13. DOI: https://doi.org/10.4271/2006-01-1546

B. Kelg. “Numerical analysis of injection characteristics using biodiesel fuel”. Fuel. Vol. 85. 2006. pp. 2377-2387. DOI: https://doi.org/10.1016/j.fuel.2006.05.009

F. V. Tinaut, A. Melgar, B. Giménez. “A model of atomization of a transient evaporative spray”. SAE paper 1999-01-0913. pp.1-10. DOI: https://doi.org/10.4271/1999-01-0913

G. Stiesch. Modeling engine spray and combustion processes. Ed. Springer-Verlag N.Y. Inc. 2003. pp 141-149. DOI: https://doi.org/10.1007/978-3-662-08790-9

B. Reveille, A. Kleemann, S. Jay. “Towards even cleaner diesel engines: Contribution of 3D CFD tools”. Oil and gas science and technology – Rev. IFP. Vol. 61. 2006. pp. 43-56. DOI: https://doi.org/10.2516/ogst:2006003x

Y. Jeong, Y. Quian, S. Campbell, K. Rhee. “Investigation of a direct injection diesel engine by high-speed spectral IR imaging and KIVA-II”. SAE paper 941732. 1994. pp. 1-11. DOI: https://doi.org/10.4271/941732

B. Dillies, B. Cousyn, A. Ducamin. “Indirect Injection Diesel Engine Combustion Calculations: Validation and Industrial use of the KIVA-II code”. 26th FISITA Congress. Praga, 1996.

K. Tsao, Y. Dong, Y. Xu, “Investigation of flow filed and fuel spray in a direct injection diesel engine via KIVA-II program,” SAE paper. 961616. 1990. pp. 1-11. DOI: https://doi.org/10.4271/901616

W. Yuan, A. C. Hansen, M. E. Tat, J. H. Van Gerpen, Z. Tan. “Spray, ignition and combustion modeling of biodiesel fuels for investigating NOX emissions”. Transactions of the ASAE. Vol. 48. 2005. pp. 933-939. DOI: https://doi.org/10.13031/2013.18498

K. Yamane, A. Ueta, Y. Shimamoto. “Influence of Physical and Chemical Properties of Biodiesel Fuel on Injection, Combustion and Exhaust Emission Characteristics in a DI-CI Engine”. The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001). Nagoya. 2001. pp. 402-409.

G. Pizza, Y. M. Wright, G. Weisser, K. Boulouchos. “Evaporating and non-evaporating diesel spray simulation: comparison between the ETAB and wave breakup model”. International Journal of Vehicle Design. Vol. 45. 2007. pp. 80 - 99. DOI: https://doi.org/10.1504/IJVD.2007.013672

C. Baumgarten, G. P. Merker. “Modeling primary break-up in high-pressure diesel injection,” Motortechnische Zeitschrift (MTZ worldwide). Vol. 65. 2004. pp. 21-24. DOI: https://doi.org/10.1007/BF03227667

F. X. Tanner. “Liquid jet atomization and droplet breakup modeling of non-evaporative diesel fuel sprays”. SAE paper 1997-0050. pp. 67-80. DOI: https://doi.org/10.4271/970050

Z. Zheng, M. Yao. “Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel,” Fuel. Vol. 88. 2008. pp. 354-365. DOI: https://doi.org/10.1016/j.fuel.2008.09.002

E. M. Fisher, W. J. Pitz, H. J. Curran, C. K. Westbrook. “Detailed chemical kinetic mechanism for combustion of oxygenated fuels”. Proceedings of the combustion institute. Vol. 28. 2000. pp. 1579-1586. DOI: https://doi.org/10.1016/S0082-0784(00)80555-X

S. Gail, S. M. Sarathy, M. J. Thomson, P. Dievart, P. Dagaut. “Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)- 2-butenoate and methyl butanoate”. Combustion and Flame. Vol. 155. 2008. pp 635-650. DOI: https://doi.org/10.1016/j.combustflame.2008.04.007

P. F. Flyn, J. E. Dec, C. K. Westbrook. “Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation”. SAE paper 1999-01-0509. DOI: https://doi.org/10.4271/1999-01-0509

J. S. Matos, J. L. Trenzado, E. González, R. Alcalde. “Volumetric properties and viscosities of the methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in the temperatura range from 283.15 to 313.15 K”. Fluid Phase Equilibria. Vol. 186. 2001. pp 207-234. DOI: https://doi.org/10.1016/S0378-3812(01)00511-8

B. E. Poling, J. M. Praustniz, J. P. O’Connell. The properties of gases and liquids. Ed. McGraw-Hill. New York. 2001. pp 278-280.

P. Winget, D. M. Dolney, D. J. Giesen, C. J. Cramer, D. G. Truhlar. Minnesota Solvent Descriptor Database. Department of Chemistry and Supercomputer Institute, University of Minnesota. Minneapolis. 1999.

H. K. Suh, C. S. Lee. “Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine”. Fuel. 2007. pp. 1-8.

H. Hiroyasu, M. Arai. “Fuel spray penetration and spray angle in diesel spray”. Transactions Journal SAE. Vol. 21. 1980. pp. 5-11.

S. S. Sazhin, G. Geng, M. R. Heilcal, “A model for fuel spray penetration”. Fuel. Vol. 80. 2001. pp. 2171-2180. DOI: https://doi.org/10.1016/S0016-2361(01)00098-9

D. L. Siebers. “Scaling liquid-phase fuel penetration in diesel sprays base don mixing- limited vaporization. SAE paper 1999-01-0528. pp. 1-24. DOI: https://doi.org/10.4271/1999-01-0528

Descargas

Publicado

2013-07-16

Cómo citar

Agudelo, J., Agudelo, A., & Benjumea, P. (2013). Estudio de chorros diesel usando mecánica de fluidos computacional. Revista Facultad De Ingeniería Universidad De Antioquia, (49), 61–69. https://doi.org/10.17533/udea.redin.15924

Artículos más leídos del mismo autor/a

1 2 > >>