Unknown objects drawing using image retrieval

Authors

  • Karina Ruby Perez Daniel IPN ESIME
  • Enrique Escamilla Hernandez IPN ESIME
  • Takayuki Nagai University of Electro Communications
  • Mariko Nakano Miyatake IPN ESIME

DOI:

https://doi.org/10.17533/udea.redin.13546

Keywords:

PHOG, segmentation, K means, tag object, learning objects

Abstract

In this paper an unknown objects drawing model is proposed. Here we describe a technique that let us build a visual model of a word through images retrieved from Internet, enabling to learn any object at any time. This process is done without any prior knowledge of the objects appearance. However this information must be filtered in order to get the most meaningful image according to the keyword and allowing making the visual relation between words and images as much unsupervised as it could be possible like humans understanding. For this purpose Pyramid of Histogram of Oriented Gradients (PHOG) feature extraction, K-means clustering and color segmentation is done, and then the final image is drawn as an application of the learning process. The proposed model is implemented in a robot platform and some experiments are carried out to evaluate the accuracy of this algorithm.

|Abstract
= 141 veces | PDF (ESPAÑOL (ESPAÑA))
= 48 veces|

Downloads

Download data is not yet available.

References

K. Dautenhahn, I. Werry, J. Rae, P. Dickerson, P. Stribling, B. Ogden, “Robotic Playmates: Analysing Interactive Competencies of Children with Autism Playing with a Mobile Robot”. Socially Intelligent Agents - Creating Relationships with Computers and Robots. K. Dautenhahn, A. Bond, L. Canamero, B. Edmonds (editors). Ed. Kluwer Academic Publishers. Boston. 2002. pp.117-124. DOI: https://doi.org/10.1007/0-306-47373-9_14

A. M. Howard, H.W. Park, C. C. Kemp. Extracting Play Primitives for a Robot Playmate by Sequencing Low-Level Motion Behaviors. Proc. of IEEE Int. Symp. on Robot and Human Interactive Communication. Munich, Germany. August 2008. pp.360-365. DOI: https://doi.org/10.1109/ROMAN.2008.4600692

A. J. B. Trevor, H. W. Park, A. M. Howard, C. C. Kemp. Playing with Toys: Towards Autonomous Robot Manipulation for Therapeutic Play. Proc. of IEEE Int. Conf. on Robotics and Automation. Kobe, Japan, May 2009. pp. 2139-2145. DOI: https://doi.org/10.1109/ROBOT.2009.5152589

H. Fu, Z. Chi, D. Feng. “Recognition of attentive objects with a concept association network for image annotation”. Pattern Recognition. Vol. 43. 2010. pp. 3539-3547. DOI: https://doi.org/10.1016/j.patcog.2010.04.009

Z. Li, Z. Shi, X. Liu, Z. Li, Z. Shi. “Fusing semantic aspects for image annotation and retrieval”. Journal of Visual Communications and Image Representation. Vol. 21. 2010. pp. 789-805. DOI: https://doi.org/10.1016/j.jvcir.2010.06.004

R. Kachouri, K. Djemal, H. Maaref. “Multi-model classification method in heretogeneous image database”. Pattern Recognition. Vol. 43. 2010. pp. 4077-4088. DOI: https://doi.org/10.1016/j.patcog.2010.07.001

R. Fergus, F. Li, P. Perona, A. Zisserman. “Learning Object Categories Form Internet Image Search”. JPROC. of IEEE. Vol. 98. 2010. pp. 1453-1466. DOI: https://doi.org/10.1109/JPROC.2010.2048990

B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman. “Labelme: a database and webbased tool for image annotation”. IJCV. Vol. 77. 2008. pp. 157-173. DOI: https://doi.org/10.1007/s11263-007-0090-8

A. Torralba, R. Fergus, W. T. Freeman. “80 million tiny images: a large database for nonparametric object and scene recognition”. IEEE trans. on PAMI. Vol. 30. 2008. pp. 1958-1970. DOI: https://doi.org/10.1109/TPAMI.2008.128

R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. “Learning object categories from google’s image search”. Proc. of ICCV. Vol. 2. 2005. pp. 1816-1823. DOI: https://doi.org/10.1109/ICCV.2005.142

F. Schroff, A. Criminisi, A. Zisserman. Harvesting Image Database from the Web. Proc. of International Conference on Computer Vision. Rio de Janeiro, Brazil. October 2007. pp. 1-8. DOI: https://doi.org/10.1109/ICCV.2007.4409099

A. Bosch, A. Zisserman, X. Munoz. Representing shape with a spatial pyramid kernel. Proceedings of the International Conference on Image and Video Retrieval. New York, USA. 2007. pp. 401-408. DOI: https://doi.org/10.1145/1282280.1282340

A. Bosch, A. Zisserman, X. Munoz, Image Classification using Random Forests and Ferns. Proceedings of the International Conference on Image and Video Retrieval. Rio de Janeiro, Brazil, October 2007. pp. 1-8. DOI: https://doi.org/10.1109/ICCV.2007.4409066

D. MacKay. “An Example Inference Task: Clustering”. Information Theory, Inference and Learning Algorithms. Ed.Cambridge University Press. Chapter20. Cambridge, United Kingdom. September 2003. pp. 284–292.

K. Jain. “Data Clustering: 50 years beyond K-means”. Pattern Recognition Letters. Elsevier Journal. Vol. 31. 2010. pp. 651–666. DOI: https://doi.org/10.1016/j.patrec.2009.09.011

N. Sasao, T. Kondo, T. Suenaga, Y. Matsumoto, T. Ogasawara. Multi-Modal Interaction by HRP-2- Implementation of a Portrait Drawing Function. Proceedings on Conference of Robotics Society of Japan (CD-ROM). Yokohama, Japan. September. 2005. Vol. 23. pp. 1H13.

S. Kudoha, K. Ogawarab, M. Ruchanurucks, K. Ikeuchi. “Painting Robot with Multi-Fingered Hands and Stereo Vision”. Robotics and Autonomous Systems. Vol. 57. 2009. pp. 279-288. DOI: https://doi.org/10.1016/j.robot.2008.10.007

S. Calinon, J. Epiney, A. Billard. A Humanoid Robot Drawing Human Portraits. Proc. of IEEE-RAS Int. Conf. on Humanoid Robots. Tsukuba, Japan, December 2005. pp.161-166

Published

2012-11-15

How to Cite

Perez Daniel, K. R., Escamilla Hernandez, E., Nagai, T., & Nakano Miyatake, M. (2012). Unknown objects drawing using image retrieval. Revista Facultad De Ingeniería Universidad De Antioquia, (61), 146–157. https://doi.org/10.17533/udea.redin.13546