Unknown objects drawing using image retrieval
DOI:
https://doi.org/10.17533/udea.redin.13546Keywords:
PHOG, segmentation, K means, tag object, learning objectsAbstract
In this paper an unknown objects drawing model is proposed. Here we describe a technique that let us build a visual model of a word through images retrieved from Internet, enabling to learn any object at any time. This process is done without any prior knowledge of the objects appearance. However this information must be filtered in order to get the most meaningful image according to the keyword and allowing making the visual relation between words and images as much unsupervised as it could be possible like humans understanding. For this purpose Pyramid of Histogram of Oriented Gradients (PHOG) feature extraction, K-means clustering and color segmentation is done, and then the final image is drawn as an application of the learning process. The proposed model is implemented in a robot platform and some experiments are carried out to evaluate the accuracy of this algorithm.
Downloads
References
K. Dautenhahn, I. Werry, J. Rae, P. Dickerson, P. Stribling, B. Ogden, “Robotic Playmates: Analysing Interactive Competencies of Children with Autism Playing with a Mobile Robot”. Socially Intelligent Agents - Creating Relationships with Computers and Robots. K. Dautenhahn, A. Bond, L. Canamero, B. Edmonds (editors). Ed. Kluwer Academic Publishers. Boston. 2002. pp.117-124. DOI: https://doi.org/10.1007/0-306-47373-9_14
A. M. Howard, H.W. Park, C. C. Kemp. Extracting Play Primitives for a Robot Playmate by Sequencing Low-Level Motion Behaviors. Proc. of IEEE Int. Symp. on Robot and Human Interactive Communication. Munich, Germany. August 2008. pp.360-365. DOI: https://doi.org/10.1109/ROMAN.2008.4600692
A. J. B. Trevor, H. W. Park, A. M. Howard, C. C. Kemp. Playing with Toys: Towards Autonomous Robot Manipulation for Therapeutic Play. Proc. of IEEE Int. Conf. on Robotics and Automation. Kobe, Japan, May 2009. pp. 2139-2145. DOI: https://doi.org/10.1109/ROBOT.2009.5152589
H. Fu, Z. Chi, D. Feng. “Recognition of attentive objects with a concept association network for image annotation”. Pattern Recognition. Vol. 43. 2010. pp. 3539-3547. DOI: https://doi.org/10.1016/j.patcog.2010.04.009
Z. Li, Z. Shi, X. Liu, Z. Li, Z. Shi. “Fusing semantic aspects for image annotation and retrieval”. Journal of Visual Communications and Image Representation. Vol. 21. 2010. pp. 789-805. DOI: https://doi.org/10.1016/j.jvcir.2010.06.004
R. Kachouri, K. Djemal, H. Maaref. “Multi-model classification method in heretogeneous image database”. Pattern Recognition. Vol. 43. 2010. pp. 4077-4088. DOI: https://doi.org/10.1016/j.patcog.2010.07.001
R. Fergus, F. Li, P. Perona, A. Zisserman. “Learning Object Categories Form Internet Image Search”. JPROC. of IEEE. Vol. 98. 2010. pp. 1453-1466. DOI: https://doi.org/10.1109/JPROC.2010.2048990
B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman. “Labelme: a database and webbased tool for image annotation”. IJCV. Vol. 77. 2008. pp. 157-173. DOI: https://doi.org/10.1007/s11263-007-0090-8
A. Torralba, R. Fergus, W. T. Freeman. “80 million tiny images: a large database for nonparametric object and scene recognition”. IEEE trans. on PAMI. Vol. 30. 2008. pp. 1958-1970. DOI: https://doi.org/10.1109/TPAMI.2008.128
R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. “Learning object categories from google’s image search”. Proc. of ICCV. Vol. 2. 2005. pp. 1816-1823. DOI: https://doi.org/10.1109/ICCV.2005.142
F. Schroff, A. Criminisi, A. Zisserman. Harvesting Image Database from the Web. Proc. of International Conference on Computer Vision. Rio de Janeiro, Brazil. October 2007. pp. 1-8. DOI: https://doi.org/10.1109/ICCV.2007.4409099
A. Bosch, A. Zisserman, X. Munoz. Representing shape with a spatial pyramid kernel. Proceedings of the International Conference on Image and Video Retrieval. New York, USA. 2007. pp. 401-408. DOI: https://doi.org/10.1145/1282280.1282340
A. Bosch, A. Zisserman, X. Munoz, Image Classification using Random Forests and Ferns. Proceedings of the International Conference on Image and Video Retrieval. Rio de Janeiro, Brazil, October 2007. pp. 1-8. DOI: https://doi.org/10.1109/ICCV.2007.4409066
D. MacKay. “An Example Inference Task: Clustering”. Information Theory, Inference and Learning Algorithms. Ed.Cambridge University Press. Chapter20. Cambridge, United Kingdom. September 2003. pp. 284–292.
K. Jain. “Data Clustering: 50 years beyond K-means”. Pattern Recognition Letters. Elsevier Journal. Vol. 31. 2010. pp. 651–666. DOI: https://doi.org/10.1016/j.patrec.2009.09.011
N. Sasao, T. Kondo, T. Suenaga, Y. Matsumoto, T. Ogasawara. Multi-Modal Interaction by HRP-2- Implementation of a Portrait Drawing Function. Proceedings on Conference of Robotics Society of Japan (CD-ROM). Yokohama, Japan. September. 2005. Vol. 23. pp. 1H13.
S. Kudoha, K. Ogawarab, M. Ruchanurucks, K. Ikeuchi. “Painting Robot with Multi-Fingered Hands and Stereo Vision”. Robotics and Autonomous Systems. Vol. 57. 2009. pp. 279-288. DOI: https://doi.org/10.1016/j.robot.2008.10.007
S. Calinon, J. Epiney, A. Billard. A Humanoid Robot Drawing Human Portraits. Proc. of IEEE-RAS Int. Conf. on Humanoid Robots. Tsukuba, Japan, December 2005. pp.161-166
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.