Active vibration control of a rotor-bearing system based on dynamic stiffness

Authors

  • Andrés Blanco Ortega National Center for Research and Technological Development
  • Francisco Beltrán Carbajal Polytechnic University of the Metropolitan Area of Guadalajara
  • Gerardo Silva Navarro CINVESTAV-IPN
  • Marco Antonio Oliver Salazar National Center for Research and Technological Development

DOI:

https://doi.org/10.17533/udea.redin.14721

Keywords:

active vibration control, eccentricity identification, Jeffcott rotor

Abstract

This paper presents an active vibration control scheme to reduce unbalance-induced synchronous vibration in rotor-bearing systems supported on two ball bearings, one of which can be automatically moved to control the effective rotor length and, as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, based on frequency analysis, speed control and acceleration scheduling, is used to avoid resonant vibration of a rotor system when it passes (run-up or coast down) through its first critical speed. Algebraic identification is used for on-line unbalance estimation at the same time that the rotor is taken to the desired operating speed. Some numerical simulations and experiments are included to show the unbalance compensation properties and robustness of the proposed active vibration control scheme when the rotor is started and operated over the first critical speed.

|Abstract
= 119 veces | PDF (ESPAÑOL (ESPAÑA))
= 78 veces|

Downloads

Download data is not yet available.

Author Biography

Andrés Blanco Ortega, National Center for Research and Technological Development

Mechatronics Coordination.

References

S. Zhou, J. Shi. “Active balancing and vibration control of rotating machinery: a survey”. The Shock and Vibration Digest. Vol. 33. 2001. pp. 361-371. DOI: https://doi.org/10.1177/058310240103300501

G. Sheu, S. Yang, C. Yang. “Design of experiments for the controller of rotor systems with a magnetic bearing”. Journal of Vibration and Acoustics. Vol. 119. 1997. pp. 200-207. DOI: https://doi.org/10.1115/1.2889704

Y. Guozhi, Y. F. Fah, C. Guang, M. Guang, F. Tong, Q. Yang. “Electro-rheological multi-layer squeeze film damper and its application to vibration control of rotor system”. Journal of Vibration and Acoustics. Vol. 122. 2000. pp. 7-11. DOI: https://doi.org/10.1115/1.568431

B. Palazzolo, S. Jagannathan, A. F. Kaskaf, G. T. Monatgue, L. J. Kiraly. “Hybrid active vibration control of rotorbearing systems using piezoelectric actuators”. Journal of Vibration and Acoustics. Vol. 115. 1993. pp. 111-119. DOI: https://doi.org/10.1115/1.2930303

Q. Jinhao, J. Tani and T. Kwon. “Control of self-excited vibration of a rotor system with active gas bearings”. Journal of Vibration and Acoustics. Vol. 125. 2003. pp. 328-334. DOI: https://doi.org/10.1115/1.1576423

X. Yu. “General influence coefficient algorithm in balancing of rotating machinery”.International Journal of Rotating Machinery. Vol. 10. 2004. pp. 85- 90. DOI: https://doi.org/10.1155/S1023621X04000090

S. Lee, B. Kim, J. Moon, D. Kim. “A study on active balancing for rotating machinery using influence coefficient method”. Proceedings of International Symposium on Computational Intelligence in Robotics and Automation. Espoo. 2005. pp. 659- 664.

S. Zhou, S. Dyer, K. K. Shin, J. Shi, J. Ni. “Extended influence coefficient method for rotor active balancing during acceleration”. Journal of Dynamics Systems Measurements and Control. Vol. 126. 2004. pp. 219- 223. DOI: https://doi.org/10.1115/1.1651533

L. Ljung. Systems identification: theory for the user. Ed Prentice-Hall. New Jersey. 1987. pp. 168-361.

S. Sagara, Z. Y. Zhao. “Numerical integration approach to on-line identification of continuous systems”. Automatica. Vol. 26. 1990. pp. 63-74. DOI: https://doi.org/10.1016/0005-1098(90)90158-E

S. Sagara, Z. Y. Zhao. “Recursive identification of transfer function matrix in continuous systems via linear integral filter”. International Journal of Control. Vol. 50. 1989. pp. 457-477. DOI: https://doi.org/10.1080/00207178908953377

M. Fliess, H. Sira-Ramírez. “An algebraic framework for linear identification, ESAIM: Control”. Optimization and Calculus of Variations. Vol. 9. 2003. pp. 151-168. DOI: https://doi.org/10.1051/cocv:2003008

F. Beltrán-Carbajal, H. Sira-Ramírez, G. Silva- Navarro. “Adaptive-like active vibration supression for a nonlinear mechanical system using on-line algebraic identification”. Proceedings of the Thirteenth International Congress on Sound and Vibration. Vienna. July 2006. pp. 1-8.

F. Beltrán-Carbajal, G. Silva-Navarro, H. Sira- Ramírez, J. Quezada Andrade. “Active vibration control using on-line algebraic identification of harmonic vibrations”. Proceedings of American Control Conference. Portland (Oregon). 2005. pp. 4820-4825.

J. M. Vance. Rotordynamics of Turbomachinery. Ed. John Wiley and Sons. New York. 1988. pp. 7-231.

A. Dimarogonas. Vibration for Engineers. Ed. Prentice Hall. New Jersey. 1996. pp. 533-536.

Z. Sandler. Robotics: designing the mechanism for automated machinery. Ed. Academic Press. San Diego (CA). 1999. pp. 162-164.

K. T. Millsaps, L. Reed. “Reducing lateral vibrations of a rotor passing through critical speeds by acceleration scheduling”. Journal of Engineering for Gas Turbines and Power. Vol. 120. 1998. pp. 615-620. DOI: https://doi.org/10.1115/1.2818190

S. S. Rao. Mechanical Vibration. Ed. Pearson Education. New Jersey. 2004. pp. 671-1034.

M. Fliess, R. Marquez, E. Delaleau, H. Sira Ramírez. “Correcteurs proportionnels-integraux generalizes”. ESAIM Control, Optimisation and Calculus of Variations. Vol. 7. 2002. pp. 23-41. DOI: https://doi.org/10.1051/cocv:2002002

Published

2013-03-01

How to Cite

Blanco Ortega, A., Beltrán Carbajal, F., Silva Navarro, G., & Oliver Salazar, M. A. (2013). Active vibration control of a rotor-bearing system based on dynamic stiffness . Revista Facultad De Ingeniería Universidad De Antioquia, (55), 125–133. https://doi.org/10.17533/udea.redin.14721

Most read articles by the same author(s)