Synthesis of two new Nickel and CopperNickel vanadates used for propane oxidative dehydrogenation

Authors

  • Adriana Echavarría University of Antioquia
  • Juan Pablo Hernández University of Antioquia
  • Luz Amparo Palacio University of Antioquia https://orcid.org/0000-0002-4950-1266

DOI:

https://doi.org/10.17533/udea.redin.16317

Keywords:

nickel vanadate, copper-nickel vanadate, propane, propene, oxidative dehydrogenation

Abstract

Two new vanadates have been successfully synthesized by the hydrothermal and coprecipitation methods. Both vanadates were calcined at 600 °C and the resulting catalysts were tested on reaction of oxidative dehydrogenation of propane. The catalysts were characterized by x-ray diffraction, atomic absorption, thermogravimetric analysis, and differential temperature analysis. The reaction was carried out in the temperature range of 350-500 °C. A conversion of propane of 10.6 % and a selectivity towards propene of 29.9 % at 400 °C were obtained with nickel vanadate; a conversion of 1.9 % and a selectivity of 56.9 % were reached at the same temperature with the nickel copper vanadate.

|Abstract
= 147 veces | PDF (ESPAÑOL (ESPAÑA))
= 70 veces|

Downloads

Download data is not yet available.

Author Biographies

Adriana Echavarría, University of Antioquia

Catalysts and Adsorbents Group.

Juan Pablo Hernández, University of Antioquia

Catalysts and Adsorbents Group.

Luz Amparo Palacio, University of Antioquia

Catalysts and Adsorbents Group. Chemistry Institute. State University of Rio de Janeiro.

References

F. Cavani, N. Ballarini, A. Cericola. “Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?”. Catal. Today. Vol. 127. 2007. pp. 113-131. DOI: https://doi.org/10.1016/j.cattod.2007.05.009

H. Kung, M. Chaar. “Oxidative Dehydrogenation of Alkanes to Unsaturated Hydrocarbons”. U.S. Patent N.° 4,777,319. January 01. 1988.

U. Ozkan, R. Watson. “Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes”. U.S. Patent N. ° 6,521,808. Februrary 18. 2003.

L. Levels, S. Fuchs, K. Seshan, J. Lercher, L. Lefferts. “Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts”. Appl. Catal. A. Vol. 227. 2002. pp. 287-297. DOI: https://doi.org/10.1016/S0926-860X(01)00944-9

L. Leveles, K. Seshan, J. lercher, L. Lefferts. “Oxidative conversion of propane over lithium-promoted magnesia catalyst - I. Kinetics and mechanism”. J. Catal. Vol. 218. 2003. pp. 296-306. DOI: https://doi.org/10.1016/S0021-9517(03)00112-X

L. Madeira, M. Portela, C. Mazzocchia. “Nickel molybdenum catalysts and their use in the selective oxidation of hydrocarbons”. Catal. Rev. Vol. 46. 2004. pp. 53-110. DOI: https://doi.org/10.1081/CR-120030053

E. Heracleous, M. Machli, A. Angeliki. “Oxidative dehydrogenation of ethane and propane over vanadium and molybdenum supported catalysts”. J. Mol. Catal. A. Vol. 232. 2005. pp. 29-39. DOI: https://doi.org/10.1016/j.molcata.2005.01.027

S. Sugiyama, T. Hashimoto, N. Shigemoto, H. Hayashi, “Redox Behaviors of Magnesium Vanadate Catalysts During the Oxidative Dehydrogenation of Propane”. Catal. Lett. Vol. 89. 2003. pp. 229-233. DOI: https://doi.org/10.1023/A:1025758614040

S. Sugiyama, T. Hashimoto, Y. Morishita, N. Shigemoto, H. Hayashi. “Effects of calcium cations incorporated into magnesium vanadate on the redox behaviors and the catalytic activities for the oxidative dehydrogenation of propane”. Appl. Catal. A. Vol. 270. 2004. pp. 253-260. DOI: https://doi.org/10.1016/j.apcata.2004.05.018

S. Sugiyama, T. Hashimoto, Y. Tanabe, N. Shigemoto, H. Hayashi. “Effects of the enhancement of the abstraction of lattice oxygen from magnesium vanadate incorporated with copper(II) cations on the oxidative dehydrogenation of propane”. J. Mol. Catal. A: Chem. Vol. 227. 2005. pp. 255-261. DOI: https://doi.org/10.1016/j.molcata.2004.10.046

S. Sugiyama, T. Osaka, Y. Hirata, K. Sotowa. “Enhancement of the activity for oxidative dehydrogenation of propane on calcium hydroxyapatite substituted with vanadate”. Appl. Catal. A. Vol. 312. 2006. pp. 52-58. DOI: https://doi.org/10.1016/j.apcata.2006.06.018

R. Valenzuela, V. Cortes. “On the intrinsic activity of vanadium centers in the oxidative dehydrogenation of propane over V-Ca-O and V-Mg-O catalysts”. Topics in Catal. Vol. 11-12. 2000. pp. 153-160.

S. Sugiyama, T. Osaka, T. Hashimoto, K. Sotowa. “Oxidative Dehydrogenation of Propane on Calcium Hydroxyapatites Partially Substituted with Vanadate”. Catal. Lett. Vol. 103. 2005. pp. 121-123. DOI: https://doi.org/10.1007/s10562-005-6513-7

B. Zhaorigetua, W. Lib, H. Xub, R. Kiefferc. “Correlation Between the Characteristics and Catalytic Performance of Ni–V–O Catalysts in Oxidative Dehydrogenation of Propane”. Catal. Lett. Vol. 94. 2004. pp. 125-129. DOI: https://doi.org/10.1023/B:CATL.0000019342.03708.f3

L. Palacio. “Métodos de síntesis de nuevos materiales basados en metales de transición”. Rev. Fac. Ing. No. 22. 2004. pp. 51-61.

M. Khaled, B. Bouzid, A. Yahya. “Room temperature synthesis of zinc pyrovanadate Zn3 (OH)2 V2 O7 ·2H2 O”. J. Mater. Chem. Vol. 9. 1999. pp. 1543-1545. DOI: https://doi.org/10.1039/a901580i

D. Hoyos, A. Echavarría, C. Saldarriaga. “Synthesis and structure of a porous zinc vanadate, Zn3 (VO4 )2 ·3H2 O”. J. Mater. Sci. Vol. 36. 2001. pp. 5515-5518. DOI: https://doi.org/10.1023/A:1012418706071

L. Palacio, J. Silva, F. Ribeiro, M. Ribeiro. “Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate”. Catal. Today. Vol. 133. 2008. pp. 502-508. DOI: https://doi.org/10.1016/j.cattod.2007.12.015

F. Zhang, P. Zavalij, M. Whittingham. “Synthesis and characterization of a pipe-structure manganese vanadium oxide by hydrothermal reaction”. J. Mater. Chem. Vol. 9. 1999. pp. 3137- 3140. DOI: https://doi.org/10.1039/a907465a

Published

2013-08-16

How to Cite

Echavarría, A., Hernández, J. P., & Palacio, L. A. (2013). Synthesis of two new Nickel and CopperNickel vanadates used for propane oxidative dehydrogenation. Revista Facultad De Ingeniería Universidad De Antioquia, (67), 137–145. https://doi.org/10.17533/udea.redin.16317