Analysis of Bender Element signals during triaxial testing

Authors

DOI:

https://doi.org/10.17533/udea.redin.n76a13

Keywords:

shear wave velocity, time domain, frequency domain, bender elements

Abstract

This paper presents and discusses three different wave propagation methods used to evaluate the shear wave velocities, Vs  , computed from Bender Element (BE) analyses during triaxial testing. The peak-to-peak travel time, cross-correlation and phase-delay approaches were employed to calculate Vs  and to determine the error in wave propagation velocities when time domain and frequency domain methods are implemented. The results obtained from vertical BE tests conducted on clay specimens indicates that, when the proper BE testing conditions are met, the differences in Vs  calculated using the three methods were within ±2%. This error is small and indicates that the peak-to-peak method, the simplest and fastest time domain approach, can be employed as a straight forward method to determine shear wave velocities.

|Abstract
= 1613 veces | PDF
= 275 veces|

Downloads

Download data is not yet available.

Author Biographies

David Guillermo Zapata-Medina, National University of Colombia

Department of Civil Engineering.

Taesik Kim, Hongik University

School of Urban and Civil Engineering.

Carlos Alberto Vega-Posada, University of Antioquia

Faculty of Engineering.

References

J. Burland, “Ninth Laurits Bjerrum Memorial Lecture: ‘Small is beautiful’—the stiffness of soils at small strains”. Canadian Geotechnical Journal . Vol. 26. 1989. pp. 499-516.

F. Tatsuoka, S. Shibuya, R. Kuwano. Advanced laboratory stress-strain testing of geomaterials . Ed. Taylor & Francis. 2001. pp. 1-340.

D. Shirley, L. Hampton. “Shear-wave measurements in laboratory sediments”. Journal of the Acoustical Society of America. Vol. 63. 1978. pp. 607-613.

L. Callisto, G. Calabresi. “Mechanical behaviour of a natural soft clay”. Géotechnique . Vol. 48. 1998. pp. 495- 513.

L. Callisto, S. Rampello. “Shear strength and small- strain stiffness of a natural clay under general stress conditions”. Géotechnique . Vol. 52. 2002. pp. 547-560.

R. Kuwano, R. Jardine. “On the applicability of cross- anisotropic elasticity to granular materials at very small strains”. Géotechnique . Vol. 52. 2002. pp. 727- 749.

R. Dyvik, C. Madshus. Laboratory measurements of Gmax using bender elements. Proceedings of the ASCE Annual Convention: Advances in the Art of Testing Soils under Cyclic Conditions. Detroit, USA. 1985. pp. 186- 196.

C. Abbiss. “Shear-wave measurements of the elasticity of the ground”. Géotechnique . Vol. 31. 1981. pp. 91-104.

G. Alvarado, M. Coop. “On the performance of bender elements in triaxial tests”. Géotechnique . Vol. 62. 2012. pp. 1-17.

J. Blewett, I. Blewett, P. Woodward. “Measurement of shear-wave velocity using phase-sensitive detection techniques”. Canadian Geotechnical Journal . Vol. 36. 1999. pp. 934-939.

J. Bonal, S. Donohue, C. McNally. “Wavelet analysis of bender element signals”. Géotechnique . Vol. 62. 2012. pp. 243-252.

M. Fam, C. Santamarina. “Study of geoprocesses with complementary mechanical and electromagnetic- wave measurements in an oedometer”. Geotechnical Testing Journal . Vol. 18. 1995. pp. 307-314.

V. Jovicic, M. Coop, M. Simi ć . “Objective criteria for determining Gmax from bender element tests”. Géotechnique . Vol. 46. 1996. pp. 357-362.

J. Lee, J. Santamarina. “Bender Elements: Performance and Signal Interpretation”. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 131. 2005. pp. 1063-1070.

E. Leong, S. Yeo, H. Rahardjo. “Measuring shear wave velocity using bender elements”. Geotechnical Testing Journal . Vol. 28. 2005. pp. 488-498.

G. Viggiani, J. Atkinson. “Interpretation of bender element tests”. Geotechnique. Vol. 45. 1995. pp. 149- 154.

T. Kim. I ncrementally nonlinear responses of soft Chicago glacial clays . PhD Thesis, Northwestern University. Evanston, USA. 2011. pp. 1-194.

C. Vega. Evaluation of liquefaction susceptibility of clean sands after blast densification. PhD Thesis, Northwestern University. Evanston, USA. 2012. pp. 1-210.

C. Vega, R. Finno, D. Zapata. “Effect of gas on the mechanical behavior of medium-dense sands”. Journal of Geotechnical and Geoenvironmental Engineering . Vol. 140. 2014. pp. 1-10.

D. Zapata. Evaluation of dynamic soil parameter changes due to construction–induced stresses . PhD Thesis, Northwestern University. Evanston, USA. 2012. pp. 1-260.

R. Finno, D. Zapata. “Effects of construction- induced stresses on dynamic soil parameters of Bootlegger Cove clays”. Journal of Geotechnical and Geoenvironmental Engineering . Vol. 140. 2014. pp. 1-12.

D. Zapata, R. Finno. “Defi ning Y2 yielding from cyclic triaxial tests”. Geotechnical Testing Journal. Vol. 36. 2013. pp. 660-669.

D. Zapata, R. Finno, C. Vega. “Stress history and sampling disturbance effects on monotonic and cyclic responses of overconsolidated Bootlegger Cove clays”. C anadian Geotechnical Journal . Vol. 51. 2014. pp. 599- 609.

M. Arroyo, P. Greening, D. Muir. “An estimate of uncertainty in current laboratory pulse test practice”. Rivista Italiana di Geotecnica. Vol. 37. 2003. pp. 33–51.

M. Arroyo, D. Muir, P. Greening. “Source near-field effects and pulse tests in soil samples”. Géotechnique. Vol. 53. 2003. pp. 337-345.

G. Heymann, C. Clayton, G. Reed. “Laser interferometry to evaluate the performance of local displacement transducers”. Géotechnique . Vol. 47. 1997. pp. 399-405.

G. Heymann, C. Clayton, G. Reed. “Triaxial ultra-small strain measurements using laser interferometry”. Geotechnical Testing Journal . Vol. 28. 2005. pp. 544-552.

E. Brignoli, M. Gotti, K. Stokoe. “Measurement of shear waves in laboratory specimens by means of piezoelectric transducers”. Geotechnical Testing Journal . Vol. 19. 1996. pp. 384-397.

I. Sánchez, J. Roesset, K. Stokoe. Analytical studies of body wave propagation and attenuation . Geotechnical Engineering Rep. GR86-15, The University of Texas at Austin. Austin, USA. 1986. pp. 1-272.

G. Viggiani. Small strain stiffness of fine grained soils . PhD Thesis, City University London. London, UK. 1992. pp. 1-288.

V. Jovicic. The measurement and interpretation of small strain stiffness of soils . PhD Thesis, City University London. London, UK. 1997. pp. 1-276.

T. Kim, R. Finno. “Anisotropy evolution and irrecoverable deformation in triaxial stress probes”. Journal of Geotechnical and Geoenvironmental Engineering . Vol. 138. 2012. pp. 155-165.

Y. Wang, K. Lo, W. Yan, X. Dong. “Measurement biases in the bender element test”. Journal of Geotechnical and Geoenvironmental Engineering . Vol. 133. 2007. pp. 564- 574.

E. Kaarsberg. “Elastic-wave velocity-measurements in rocks and other materials by phase-delay methods”. Geophysics . Vol. 40. 1975. pp. 955-960.

W. Sachse, Y. Pao. “On the determination of phase and group velocities of dispersive waves in solids”. Journal of Applied Physics. Vol. 49. 1978. pp. 4320-4327.

R. Blackman, J. Tukey. The measurement of power spectra from the point of view of communications engineering. 1 st ed. Ed. Dover Publications. New York, USA. 1959. pp. 1-190.

M. Arroyo, P. Greening. “Phase and amplitude responses associated with the measurement of shear-wave velocity in sand by bender elements: Discussion”. Canadian Geotechnical Journal . Vol. 39. 2002. pp. 483-484.

P. Greening, D. Nash. “Frequency domain determination of Go using bender elements”. Geotechnical Testing Journal. Vol. 27. 2004. pp. 288-294.

Downloads

Published

2015-09-27

How to Cite

Zapata-Medina, D. G., Kim, T., & Vega-Posada, C. A. (2015). Analysis of Bender Element signals during triaxial testing. Revista Facultad De Ingeniería Universidad De Antioquia, (76), 107–113. https://doi.org/10.17533/udea.redin.n76a13

Most read articles by the same author(s)