Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food

Authors

  • Misael Cortés Universidad Nacional de Colombia
  • Gustavo Hernández Universidad Nacional de Colombia
  • Eliana M. Estrada Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.vitae.v24n1a07

Keywords:

Physalis peruviana L., aguaymanto, fruits, functional foods, dehydration

Abstract

Background: currently, functional foods are the type of foods of most interest to the modern consumer, due to the health benefits they provide. Objectives: Optimize the spray drying process to obtain cape gooseberry powder added with active compounds. Methods: A process of spray drying was carried out to obtain a powder from cape gooseberry suspensions added with vitamin C, iron, folic acid, isolated soy protein and dietary fiber. The drying process was optimized according to the characteristics of food formulations and operating conditions, obtaining a product with low hygroscopicity, high solubility and high levels of physiologically active compounds. Response surface methodology was used, considering a central composite design with four factors: maltodextrin (0-40%p/p), inlet air temperature (170-210°C), atomizer disc speed (16000-24000 rpm) and outlet air temperature (75-95°C). Results: The results showed a higher retention of vitamin C (69.7±0.7%), folic acid (90.9±1.8%) and iron (90.8±1.0%) with the food formulation containing a 24.4% of maltodextrin and the drying process defined by an atomizer disc speed of 19848 rpm and inlet and outlet air temperature of 194.2°C and 87.7°C, respectively. Conclusions: The spray drying process is an effective technology that provides added value to the fruit of cape gooseberry, allowing the incorporation and conservation of active compounds such as iron, folic acid and ascorbic acid.
|Abstract
= 578 veces | PDF (ESPAÑOL (ESPAÑA))
= 348 veces|

Downloads

Download data is not yet available.

Author Biographies

Misael Cortés, Universidad Nacional de Colombia

Faculty of Agricultural Sciences, Department of Agricultural Engineerig and Food, Functional Foods Research Group, PhD, Titular Professor

Gustavo Hernández, Universidad Nacional de Colombia

Faculty of Agricultural Sciences, Department of Agricultural Engineerig and Food, Functional Foods Research Group, MSc, Titular Professor

Eliana M. Estrada, Universidad Nacional de Colombia

Functional Foods Research Group, Research

References

Wu SJ, Ng LT, Huang YM, Lin DL, Wang SS, Huang SN, Lin CC. Antioxidant activities of Physalis peruviana. Biol. Pharm. Bull. 2005; 28(6): 963-966.

Wu SJ, Tsai JY, Chang SP, Lin DL, Wang SS, Huang SN, Ng LT. Supercritical carbon dioxide extract exhibits enhance antioxidant and anti-inflammatory activities of Physalis peruviana. J. Ethnopharmacol. 2006; 108(1): 407-413.

Bastos GN, Santos AR, Ferrerira VM, Costa AM, Bispo CI, Silveira AJ, Do Nascimento JLM. Antinociceptive effect of the aqueous extract obtained from roots of Physalis angulata L. on mice. J. Ethnopharmacol. 2006; 103(2): 241-245.

Rodríguez S, Rodríguez E. Efecto de la ingesta de Physalis peruviana (aguaymanto) sobre la glicemia postprandial en adultos jóvenes. Rev Med Vallejiana. 2007; 4(1): 43-53

Zavala D, Quispe M, Pelayo A, Posso M, Rojas, Wolach V. Efecto citotóxico de Physalis peruviana (capuli) en cáncer de colon y leucemia mieloide crónica. An Fac Med. 2006; 67(4): 283-289.

Krishnaiah D, Bono A, Sarbatly R, Nithyanandam R, Anisuzzaman SM. Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology. Journal of King Saud University - Engineering Sciences. 2015 January; 27(1): 26-36.

Chen XD, Patel KC. Manufacturing Better Quality Food Powders from Spray Drying and Subsequent Treatments. Dry Technol. 2008; 26(11): 1313-1318.

Desai KG, Jin Park H. Recent Developments in Microencapsulation of Food Ingredients. Dry Technol. 2005; 23(7): 1361-1394.

Fernández-Pérez V, Tapiador J, Martı́n A, Luque de Castro MD. Optimization of the drying step for preparing a new commercial powdered soup. Innovative Food Science & Emerging Technologies. 2004; 5(3): 361-368.

Dib Taxi C., Menezes HC, Santos AB, Grosso CR. Study of the microencapsulation of camu–camu (Myrciaria dubia) juice, J Microencapsul. 2003; 20(4): 443-448.

Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release: A review. Journal of Food Science and Technology, 2006; 41(1): 1-21.

Patil V, Chauhan AK, Singh RP. Optimization of the spraydrying process for developing guava powder using response surface methodology. Journal Powder Technol. 2014; 253:230-6.

Mendoza-Corvis, Fernando A; Arteaga M, Margarita y Perez S, Omar. Comportamiento de la vitamina C en un producto a base de lactosuero y pulpa de mango variedad Magdalena River (Mangífera Indica) durante el secado por aspersión. Rev. Chil. Nutr. 2016, 43(2), 159-166p.

Naddaf L, Avalo B, Oliveros M. Spray-dried natural orange juice encapsulants using maltodextrin and gum arabic. Rev. Téc. Ing. Univ. Zulia. 2012; 35(1):20-7.

Carrillo-Navas H, González-Rodea DA, Cruz-Olivares J, Barrera-Pichardo JF, Román-Guerrero A, Pérez-Alonso C. Storage stability and physicochemical properties of passion Fruit juice microcapsules by spray-drying. Rev. Mex. Ing. Química. 2011; 10(3):421-30

Published

27-04-2017

How to Cite

Cortés, M., Hernández, G., & Estrada, E. M. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. Vitae, 24(1), 59–67. https://doi.org/10.17533/udea.vitae.v24n1a07

Issue

Section

Foods: Science, Engineering and Technology