Nanoencapsulation of bioactive ingredients: trends in pharmaceutical industry and functional foods

Abstract

Multiple researches have allowed the development of nanoencapsulation techniques that ease the controlled or targeted release of bioactive components and favor their incorporation in different foods and medication formulations to improve their bioavailability. Recent studies have facilitated the development of nanoencapsulation systems of different active ingredients for functional foods, comprising phenolic compounds, antioxidants, essential oils, minerals, flavors, fish oils, essential fatty acids, vitamins, antimicrobials, soluble fiber, peptides, lycopene, lutein, β-carotene, phytosterols, iron, calcium, among others, as well as bioactive compounds for therapeutic applications as polyphenols, curcumin, quercetin, resveratrol and epigallocatechin-3-gallate.

|Abstract
= 154 veces | PDF
= 164 veces|

Downloads

Download data is not yet available.

Author Biography

Diana Margarita MÁRQUEZ FERNÁNDEZ, Universidad de Antioquia

Faculty of Pharmaceutical and Food Sciences. Pharmaceutical Chemist, MSc, PhD, Full Time Associate Professor.

References

Akhavan S, Assadpour E, Katouzian I, Jafari sm. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Tech. 2018; 74:132-46. DOI: 10.1016/j.tifs.2018.02.001

Faridi Esfanjani A, Assadpour E, Jafari SM. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Tech. 2018; 76:56-66. DOI: 10.1016/j.tifs.2018.04.002

Assadpour E, Jafari SM. (2018): A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr. 2018; 1-47. DOI: 10.1080/10408398.2018.1484687

Shampa Sen, Yashwant V. Pathak. Nanotechnology in Nutraceuticals: Production to Consumption. Boca Ratón, Florida, United States: Taylor and Francis Group; 2017. 465p.

Conte R, Calarco A, Napoletano A, Valentino A, Margarucci S, Di Cristo F, Di Salle A, Peluso G. Polyphenols Nanoencapsulation for Therapeutic Applications. J Biomol Res Ther. 2016; 5:2. DOI: 10.4172/2167-7956.1000139

Solans C, Izquierdo P, Nolla J, Azemar N, García C. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005; 10 (3-4):102-10. DOI:10.1016/j.cocis.2005.06.004

Juan Huang, Qiang Wang, Tong Li, Nan Xia, Qiang Xia. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J Food Eng. 2017; 215:1-12. DOI: 10.1016/j.jfoodeng.2017.07.002

Jafari SM, McClements DJ. 2017. Chapter One - Nanotechnology approaches for increasing nutrient bioavailability. In Advances in Food and Nutrition Research. 81:1-30. Cambridge, United States: Academic Press.378p. DOI: 10.1016/bs.afnr.2016.12.008

McClements DJ, Jafari SM. 2018. Chapter 1 - General Aspects of nanoemulsions and their formulation. Nanoemulsions. Formulation, Applications, and Characterization. 3-20. DOI: 10.1016/B978-0-12-811838-2.00001-1

Mohtashamian S, Boddohi S. Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery. J Pharm Investig. 2017; 47:85-94. DOI: 10.1007/s40005-016-0289-1

Ghasemi S, Jafari SM, Assadpour E, Khomeiri M. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018; 77:152-62. DOI: 10.1016/j.foodhyd.2017.09.030

Abaee AM Mohammadian, Jafari SM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Tech. 2017; 70 (Supplement C): 69-81. DOI: 10.1016/j.tifs.2017.10.011

Jafari SM. 2017. 1 - An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries, 1-34. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00001-X

Demirci M, Caglar MY, Cakir B, Gülseren I. 2017. 3 - Encapsulation by nanoliposomes A2 - Jafari, Seid Mahdi. In Nanoencapsulation technologies for the food and nutraceutical industries, 74-113. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00003-3

Tapia-Hernández JA, Rodríguez-Felix F, Katouzian I. 2017. 9 - Nanocapsule formation by electrospraying A2 - Jafari, Seid Mahdi. In Nanoencapsulation technologies for the food and nutraceutical industries, 320-345. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00009-4

Arpagaus C, John P, Collenberg A, Rutti D. 2017. 10 - Nanocapsules formation by nano spray drying A2 - Jafari, Seid Mahdi. In Nanoencapsulation technologies for the food and nutraceutical industries, 346-401. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00010-0

Ran R, Sun Q, Baby T, Wibowo D, Middelberg APJ, Zhao C-X. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chem Eng Sci. 2017; 169 (Supplement C):78-96. DOI: 10.1016/j.ces.2017.01.008

Jafari SM. 2017. Chapter 1 - An introduction to nanoencapsulation techniques for the food bioactive ingredients. In Nanoencapsulation of food bioactive ingredients, 1-62. London, United Kingdom: Academic Press. 500p. DOI: 10.1016/B978-0-12-809740-3.00001-5

Haratifar S, Guri A. 2017. 5 - Nanocapsule formation by caseins A2 - Jafari, Seid Mahdi. In Nanoencapsulation technologies for the food and nutraceutical industries, 140-164. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00005-7

Gharibzahedi SMT, Jafari SM. 2017. 7 - Nanocapsule formation by cyclodextrins. In Nanoencapsulation technologies for the food and nutraceutical industries, 187-261. San Diego, United States: Academic Press. 636p. DOI: 10.1016/B978-0-12-809436-5.00007-0

Published
2019-11-07
How to Cite
MÁRQUEZ FERNÁNDEZ D. M. (2019). Nanoencapsulation of bioactive ingredients: trends in pharmaceutical industry and functional foods. Vitae, 26(2), 66-67. https://doi.org/10.17533/udea.vitae.v26n2a01
Section
Editorial