In vitro antiviral activity against SARS-CoV-2 of plant extracts used in Colombian traditional medicine

Authors

  • Lizdany Flórez-Álvarez Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
  • Jahnnyer Martínez-Moreno Grupo Salud y Comunidad, Facultad de medicina, Universidad de Antioquia UdeA, Medellín, Colombia https://orcid.org/0000-0002-6906-8105
  • María I. Zapata-Cardona Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia https://orcid.org/0000-0003-2714-9190
  • Elkin Galeano Grupo de Investigación en Sustancias Bioactivas -GISB, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia https://orcid.org/0000-0002-8801-6239
  • Fernando Alzate-Guarin Grupo de Estudios Botánicos, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0002-4916-8897
  • Wildeman Zapata Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia https://orcid.org/0000-0002-7351-8738

DOI:

https://doi.org/10.17533/udea.vitae.v29n1a347854

Keywords:

SARS-CoV-2, Plant extract, Antiviral agents, Ethnobotany

Abstract

Background: Coronavirus infectious disease 2019 (COVID-19) caused by the infection with the new coronavirus SARS-CoV-2 has affected the life and health of more than 222 million people. In the absence of any specific pharmacological treatment, the need to find new therapeutic alternatives is clear. Medicinal plants are widely used worldwide to treat different conditions, including COVID-19; however, in most cases, there are no specific studies to evaluate the efficacy of these treatments. Objective: This article evaluates the antiviral effect of six plant extracts used by indigenous and afro Colombian people against SARS-CoV-2 in vitro. Methods: The antiviral effect of six extracts prepared from plants used in Colombian traditional medicine was evaluated against SARS-CoV-2 through a pre-post treatment strategy on the Vero E6 cell line. Once cytotoxicity was established through an MTT assay, the antiviral effect of the extracts was calculated based on the reduction in the viral titer determined by plaque assay. Results: Gliricidia sepium inhibited SARS-CoV-2 in a 75.6%, 56.8%, 62.5% and 40.0% at 10 mg/mL, 8 mg/mL, 6 mg/mL, and 2 mg/mL, respectively, while P. tuberculatum treatment reduced viral titer in 33.3% at 6 mg/mL after 48h. Conclusion: G. sepium and P. tuberculatum extracts exhibit antiviral activity against SARS-CoV-2 in vitro.

|Abstract
= 1226 veces | PDF
= 493 veces|

Downloads

Download data is not yet available.

References

Hui DS, E IA, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-6. https://doi.org/10.1016/j.ijid.2020.01.009

Kaul D. An overview of coronaviruses including the SARS-2 coronavirus - Molecular biology, epidemiology and clinical implications. Curr Med Res Pract. 2020;10(2):54-64. https://doi.org/10.1016/j.cmrp.2020.04.001

Parr J. Pneumonia in China: lack of information raises concerns among Hong Kong health workers. BMJ. 2020;368:m56. https://doi.org/10.1136/bmj.m56

Huang D, Lian X, Song F, Ma H, Lian Z, Liang Y, et al. Clinical features of severe patients infected with 2019 novel coronavirus: a systematic review and meta-analysis. Ann Transl Med. 2020;8(9):576. https://doi.org/10.21037/atm-20-2124

Balkhair AA. COVID-19 Pandemic: A New Chapter in the History of Infectious Diseases. Oman Med J. 2020;35(2):e123. https://doi.org/10.5001/omj.2020.41

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. https://doi.org/10.1038/s41586-020-2008-3

WHO. WHO Coronavirus (COVID-19) Dashboard: WHO; 2021 [Available from: https://covid19.who.int/].

Peng M. Outbreak of COVID-19: An emerging global pandemic threat. Biomed Pharmacother. 2020;129:110499. https://doi.org/10.1016/j.biopha.2020.110499

Paltiel AD, Schwartz JL, Zheng A, Walensky RP. Clinical Outcomes Of A COVID-19 Vaccine: Implementation Over Efficacy. Health Aff (Millwood). 2021;40(1):42-52. https://doi.org/10.1377/hlthaff.2020.02054

Lee DYW, Li QY, Liu J, Efferth T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine. 2021;80:153337. https://doi.org/10.1016/j.phymed.2020.153337

Geck MS, Cristians S, Berger-Gonzalez M, Casu L, Heinrich M, Leonti M. Traditional Herbal Medicine in Mesoamerica: Toward Its Evidence Base for Improving Universal Health Coverage. Front Pharmacol. 2020;11:1160. https://doi.org/10.3389/fphar.2020.01160

Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10(5):210-29. https://doi.org/10.4314/ajtcam.v10i5.2

Luo L, Jiang J, Wang C, Fitzgerald M, Hu W, Zhou Y, et al. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B. 2020;10(7):1192-204. https://doi.org/10.1016/j.apsb.2020.05.007

Valoyes DC, Palacios Palacios L. Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia). Ciencia en Desarrollo. 2020;11(2):85-96. https://doi.org/10.19053/01217488.v11.n2.2020.10583

Garzón Garzón Lp. CONOCIMIENTO TRADICIONAL SOBRE LAS PLANTAS MEDICINALES DE YARUMO (Cecropia sciadophylla), CARAMBOLO (Averrhoa carambola) Y UÑA DE GATO (Uncaria tomentosa) EN EL RESGUARDO INDÍGENA DE

MACEDONIA, AMAZONAS. Luna Azul. 2016(43):386-414

Rojas JJ, Ochoa VJ, Ocampo SA, Munoz JF. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med. 2006;6:2. https://doi.org/10.1186/1472-6882-6-2

Neethu S K, Neethu S. In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. Journal of Pharmacognosy and Phytochemistry. 2016;5(2):131-3

Cordoba-Tovar L, Ríos-Geovo V, Largacha-Viveros MF, Salas-Moreno M, Marrugo-Negrete JL, Ramos PA, et al. Cultural belief and medicinal plants in treating COVID 19 patients of Western Colombia. Acta Ecologica Sinica. 2021. https://doi.org/https://doi.org/10.1016/j.chnaes.2021.10.011

Perea Pandales K. Plantas medicinales reconocidas por dos comunidades del Chocó, Colombia, en el tratamiento del reumatismo. Revista Biodiversidad Neotropical. 2017;7(2):67-75

Salas JJ, Moncada B, Ledezma E. Municipio Medio Atrato, Departamento Chocó, COLOMBIA PLANTAS MEDICINALES del Corregimiento Bocas de Bebará: Universidad Tecnológica del Chocó Diego Luis Córdoba. ; 2014 [

Dos Santos Sales V, Monteiro AB, Delmondes GA, do Nascimento EP, Sobreira Dantas Nobrega de Figueiredo FR, de Souza Rodrigues CK, et al. Antiparasitic Activity and Essential Oil Chemical Analysis of the Piper Tuberculatum Jacq Fruit. Iran J Pharm Res. 2018;17(1):268-75

de Araújo-Júnior J, Ribeiro EA, da Silva SA, da Costa CD. Cardiovascular effects of two amides (Piperine and Piperdardine) isolated from Piper tuberculatum Jacq. Emir J Food Agric 2011;23(3):265-74

Sen D, Bhaumik S, Debnath P, Debnath S. Potentiality of Moringa oleifera against SARS-CoV-2: identified by a rational computer aided drug design method. J Biomol Struct Dyn. 2021:1-18. https://doi.org/10.1080/07391102.2021.1898475

Sivani BM, Venkatesh P, Murthy TPK, Kumar SB. In silico screening of antiviral compounds from Moringa oleifera for inhibition of SARS-CoV-2 main protease. Current Research in Green and Sustainable Chemistry. 2021;4:100202. https://doi.org/https://doi.org/10.1016/j.crgsc.2021.100202

Ullah A, Ullah K. Inhibition of SARS-CoV-2 3CL Mpro by Natural and Synthetic Inhibitors: Potential Implication for Vaccine Production Against COVID-19. Frontiers in Molecular Biosciences. 2021;8(211). https://doi.org/10.3389/fmolb.2021.640819

Tiwari Pandey A, Pandey I, Zamboni P, Gemmati D, Kanase A, Singh AV, et al. Traditional Herbal Remedies with a Multifunctional Therapeutic Approach as an Implication in COVID-19 Associated Co-Infections. Coatings. 2020;10(8):761. https://doi.org/10.3390/coatings10080761

Crespin Cruz YL, Rojas Morante KE. Delimitación de la actividad antibacterial del sphagnum magellanicum.: Universidad de Guayaquil, Facultad de Ingeniería Química; 2019.

Diaz FJ, Aguilar-Jimenez W, Florez-Alvarez L, Valencia G, Laiton-Donato K, Franco-Munoz C, et al. Isolation and characterization of an early SARS-CoV-2 isolate from the 2020 epidemic in Medellin, Colombia. Biomedica. 2020;40(Supl. 2):148-58. https://doi.org/10.7705/biomedica.5834

Yepes-Perez AF, Herrera-Calderon O, Oliveros CA, Florez-Alvarez L, Zapata-Cardona MI, Yepes L, et al. The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evid Based Complement Alternat Med. 2021;2021:6679761. https://doi.org/10.1155/2021/6679761

Sharma N, Qadry JS, Subramanium B, Verghese T, Rahman SJ, Sharma SK, et al. Larvicidal activity of Gliricidia sepium against mosquito larvae of Anopheles stephansi, Aedes aegypti and Culex quinquefasciatus. Pharm Biol. 1998;36(1):3-7. https://doi.org/DOI 10.1076/phbi.36.1.3.4616

T.Jasmine, Sundaram RM, M.Poojitha, G.Swarnalatha, J.Padmaja, kumar MR, et al. Medicinal properties of Gliricidia sepium: A REVIEW. International Journal of Current Pharmaceutical & Clinical Research. 2017;7(1):35-9

Hernández Ramírez I, Hernan GT, H, López Muñoz N, . El matarratón: potente agente antiviral. Evaluación del efecto terapéutico de Gliciridia sepium en el tratamiento del dengue clásico, Tumaco, Nariño, 2007-2008. Revista Nacional de Investigación. 2010;8(13)

Fakhar Z, Faramarzi B, Pacifico S, Faramarzi S. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic. J Biomol Struct Dyn. 2020:1-13. https://doi.org/10.1080/07391102.2020.1801510

Falade VA, Adelusi TI, Adedotun IO, Abdul-Hammed M, Lawal TA, Agboluaje SA. In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (M(pro)). In Silico Pharmacol. 2021;9(1):9. https://doi.org/10.1007/s40203-020-00071-w

Gutierrez-Villagomez JM, Campos-Garcia T, Molina-Torres J, Lopez MG, Vazquez-Martinez J. Alkamides and Piperamides as Potential Antivirals against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Phys Chem Lett. 2020;11(19):8008-16. https://doi.org/10.1021/acs.jpclett.0c01685

Cáceres A, Kato MJ. Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients. 2014;1(1):4-.https://doi.org/10.15171/ijpni.2014.04

Chaveerach A, Mokkamul P, Sudmoon R, Tanee T. Ethnobotany of the Genus Piper (Piperaceae) in Thailand. Ethnobotany Research and Applications. 2006;4:223. https://doi.org/10.17348/era.4.0.223-231

Silva ML, Coimbra HS, Pereira AC, Almeida VA, Lima TC, Costa ES, et al. Evaluation of piper cubeba extract, (-)-cubebin and its semi-synthetic derivatives against oral pathogens. Phytother Res. 2007;21(5):420-2. https://doi.org/10.1002/ptr.2088

Diaz LE, Munoz DR, Prieto RE, Cuervo SA, Gonzalez DL, Guzman JD, et al. Antioxidant, antitubercular and cytotoxic activities of Piper imperiale. Molecules. 2012;17(4):4142-57. https://doi.org/10.3390/molecules17044142

Flores N, Jimenez IA, Gimenez A, Ruiz G, Gutierrez D, Bourdy G, et al. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species. Phytochemistry. 2009;70(5):621-7. https://doi.org/10.1016/j.phytochem.2009.03.010

Zhu M, Zhou H, Ma L, Dong B, Zhou J, Zhang G, et al. Design and evaluation of novel piperidine HIV-1 protease inhibitors with potency against DRV-resistant variants. Eur J Med Chem. 2021;220:113450. https://doi.org/10.1016/j.ejmech.2021.113450

Radice M, Pietrantoni A, Guerrini A, Tacchini M, Sacchetti G, Chiurato M, et al. Inhibitory effect of Ocotea quixos (Lam.) Kosterm. and Piper aduncum L. essential oils from Ecuador on West Nile virus infection. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 2018;153(3):344-51. https://doi.org/10.1080/11263504.2018.1478902

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368(6489):409-12. https://doi.org/10.1126/science.abb3405

Wang F, Chen C, Tan W, Yang K, Yang H. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep. 2016;6:22677. https://doi.org/10.1038/srep22677

Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592. https://doi.org/10.1016/j.lfs.2020.117592

Tabatabaei FS, Moezizadeh M, Javand F. Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells. J Conserv Dent. 2015;18(4):315-20. https://doi.org/10.4103/0972-0707.159740

Klavina L, Springe G, Nikolajeva V, Martsinkevich I, Nakurte I, Dzabijeva D, et al. Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry). Molecules. 2015;20(9):17221-43. https://doi.org/10.3390/molecules200917221

Antiviral Activity

Downloads

Published

06-02-2022 — Updated on 23-02-2022

Versions

How to Cite

Flórez-Álvarez, L., Martínez-Moreno, J. ., Zapata-Cardona, M. I. ., Galeano, E. ., Alzate-Guarin, F. ., & Zapata, W. . (2022). In vitro antiviral activity against SARS-CoV-2 of plant extracts used in Colombian traditional medicine. Vitae, 29(1). https://doi.org/10.17533/udea.vitae.v29n1a347854 (Original work published February 6, 2022)

Issue

Section

Natural Products

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.