Effect of Prosopis ruscifolia on incretin and insulin secretion in alloxan-induced hyperglycemic rats

Authors

  • María Luisa Kennedy Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción. Campus UNA, 2169. San Lorenzo. Paraguay https://orcid.org/0000-0003-0592-6171
  • Wilfrido Arrúa Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción. Campus UNA, 2169. San Lorenzo. Paraguay
  • Teresa Taboada Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción. Campus UNA, 2169. San Lorenzo. Paraguay
  • Derlis A Ibarrola Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción. Campus UNA, 2169. San Lorenzo. Paraguay https://orcid.org/0000-0002-3427-9877
  • Miguel A. Campuzano-Bublitz Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción. Campus UNA, 2169. San Lorenzo. Paraguay https://orcid.org/0000-0002-9360-2793

DOI:

https://doi.org/10.17533/udea.vitae.v29n1a348245

Keywords:

Prosopis ruscifolia, alloxan-induced hyperglycemia, incretin, insulin, Biochemical parameters

Abstract

Background: Diabetes mellitus treatment is based on oral hypoglycemic agents or insulin. Medicinal plants constitute an option, and the leaves of Prosopis ruscifolia (Pr) were shown to be effective in reducing glycemia in hyperglycemic animals. Objective: In this paper, we report the effect of P. rusciofolia (Pr) on insulin and incretin secretion in alloxan-induced hyperglycemic rats. Methodology: The effective dose was selected, and four groups (n=10) of Wistar rats were used. Two groups with normal glycemia received water or Pr (75 mg/Kg, per os, p.o.), and two groups with hyperglycemia induced by alloxan (intraperitoneal, ip), received water or Pr (75 mg/Kg, p.o.) for 2 weeks. Oral glucose tolerance test, and incretin and insulin levels were measured at the end of the experimental period. Results: The results showed that extract promotes better tolerance to oral glucose overload, in addition to a statistically significant (p<0.001) increase in blood levels of incretin and insulin, compared to the hyperglycemic rats. Conclusion: It is concluded that the ethanolic extract of P. ruscifolia leaves has a hypoglycemic effect in hyperglycemic animals by a mechanism that involves the incretin-insulin system.

|Abstract
= 292 veces | PDF
= 204 veces| | HTML
= 2 veces|

Downloads

Download data is not yet available.

References

Diabetes. World Health Organization. Available form https://www.who.int/news-room/fact-sheets/detail/diabetes. (accessed Jul 9 2021)

American Diabetes Association. 2019. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes. Diabetes Care. 2019; 42(S1): S13-S28. DOI: https://doi.org/10.2337/dc19-S002

Tan S, Mei Wong J, Sim Y, Wong S, Mohamed Elhassan S, Tan S et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diab Metab Syndr. 2019;13(1):364-372. DOI: https://doi.org/10.1016/j.dsx.2018.10.008

Oyebode O, Kandala N, Chilton P, Lilford R. Use of traditional medicine in middle-income countries: a WHO-SAGE study. Health Policy Plann. 2016;31(8):984-991. DOI: https://doi.org/10.1093/heapol/czw022

Campuzano-Bublitz M, Ibarrola D, Hellión-Ibarrola M, Dolz J, Kennedy M. Acute and Chronic anti-hyperglycemic effect of Prosopis ruscifolia extract in Normoglycemic and Alloxan-Induced Hyperglycemic Rats. J Appl Pharm Sci. 2016;6(5):178-184. DOI: https://doi.org/10.7324/JAPS.2016.60528

Campuzano-Bublitz MA, Diarte EMG, Hellión-Ibarrola MC, Ibarrola DA, Alvarenga NL, Kennedy ML. Effect of Prosopis ruscifolia on lipid profile in alloxan-induced hyperglycemic mice and chemical characterization of alkaloid and flavonoid fractions. J Appl Pharm Sci, 2019; 9(06):086–093. DOI: https://doi.org/10.7324/JAPS.2019.90612

Soverina M, Campuzano-Bublitz M, Centurión J, Galeano A, Kennedy M. Preliminary evaluation of hepatoprotective and nephroprotective effects of Prosopis ruscifolia Griseb. leaves extract in mice. J Appl Pharm Sci. 2019;9(12):37-41. DOI: https://doi.org/10.7324/JAPS.2019.91206

National Research Councill. Guide for the Care and Use of Laboratory Animals [Internet]. 8th Edition. Washington, DC: The national Academies Press; 2011. [cited 2021 Jul 10]. 220 p. Aviable from: https://www.nap.edu/read/12910/chapter/1. DOI: https://doi.org/10.17226/12910.

Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods. 2016;78:13-31. DOI: https://doi.org/10.1016/j.vascn.2015.11.004

Zúñiga JM, Orellana Muriana J, Tur Marí J. Ciencia y tecnología del animal de laboratorio. 2da edición. Universida de Alcalá. Madrid: 2011. 477 p.

García M, Morán A, Luisa Martín M, Barthelmebs M, San Román L. The nitric oxide synthesis/pathway mediates the inhibitory serotoninergic responses of the pressor effect elicited by sympathetic stimulation in diabetic pithed rats. Eur J Pharmacol. 2006;537(1-3):126-134. DOI: https://doi.org/10.1016/j.ejphar.2006.03.020

Shaw Dunn J, Mcletchie N. Experimental alloxan diabetes in the rat. Lancet. 1943;242(6265):384-387. DOI: https://doi.org/10.1016/S0140-6736(00)87397-3

Ferreira J, Sousa D, Dantas M, Fonseca S, Menezes D, Martins A et al. Effects of Bixa orellana L. Seeds on Hyperlipidemia. Phytother Res. 2013;27(1):144-147. DOI: https://doi.org/10.1002/ptr.4675

George C, Lochner A, Huisamen B. The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J Ethnopharmacol. 2011;137(1):298-304. DOI: https://doi.org/10.1016/j.jep.2011.05.023

Bielohuby M, Popp S, Bidlingmaier M. A guide for measurement of circulating metabolic hormones in rodents: Pitfalls during the pre-analytical phase. Mol Metab. 2012;1(1-2):47-60. DOI: https://doi.org/10.1016/j.molmet.2012.07.004

Tibi L, Collier A, Patrick A, Clarke B, Smith A. Plasma alkaline phosphatase isoenzymes in diabetes mellitus. Clin Chim Acta. 1988;177(2):147-155. DOI: https://doi.org/10.1016/0009-8981(88)90136-2

Hanley A, Williams K, Festa A, Wagenknecht L, D'Agostino R, Kempf J et al. Elevations in Markers of Liver Injury and Risk of Type 2 Diabetes: The Insulin Resistance Atherosclerosis Study. Diabetes. 2004;53(10):2623-2632. DOI: DOI: https://doi.org/10.2337/diabetes.53.10.2623

Chen S, Tsai S, Jhao J, Jiang W, Tsao C, Chang L. Liver Fat, Hepatic Enzymes, Alkaline Phosphatase and the Risk of Incident Type 2 Diabetes: A Prospective Study of 132,377 Adults. Sci Rep. 2017;7(1):4649. DOI: https://doi.org/10.1038/s41598-017-04631-7

Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 2004;31(4):244-8. DOI: https://doi.org/10.1111/j.1440-1681.2004.03982.x

Christensen MB. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans. Dan Med J. 2016;63(4): B5230. DOI: https://doi.org/10.2337/db14-0440

Aaboe K, Krarup T, Madsbad S, Holst J. GLP-1: physiological effects and potential therapeutic applications. Diabetes Obes Metab. 2008;10(11):994-1003. DOI: https://doi.org/10.1111/j.1463-1326.2008.00853.x

Gribble F, Reimann F. Metabolic Messengers: glucagon-like peptide 1. Nat Met. 2021;3(2):142-148. DOI: https://doi.org/10.1038/s42255-020-00327-x

Holst J. The Physiology of Glucagon-like Peptide 1. Physiol Rev. 2007;87(4):1409-1439. DOI: https://doi.org/10.1152/physrev.00034.2006

Müller T, Finan B, Bloom S, D'Alessio D, Drucker D, Flatt P et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. DOI: https://doi.org/10.1016/j.molmet.2019.09.010

Vilsboll T, Krarup T, Deacon C, Madsbad S, Holst J. Reduced Postprandial Concentrations of Intact Biologically Active Glucagon-Like Peptide 1 in Type 2 Diabetic Patients. Diabetes. 2001;50(3):609-613. DOI: https://doi.org/10.2337/diabetes.50.3.609

Shanmugasundaram ER, Gopinath KL, Radha Shanmugasundaram K, Rajendran VM. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J Ethnopharmacol. 1990; 30, 265–279.

Ashwini S, Bobby Z, Joseph M, Jacob SE, Padmapriya R. Insulin plant (Costus pictus) extract improves insulin sensitivity and ameliorates atherogenic dyslipidaemia in fructose induced insulin resistant rats: Molecular mechanism. J Funct Foods. 2015; 17, 749–760. DOI: https://doi.org/10.1016/j.jff.2015.06.024

Verma PR, Itankar PR, Arora SK. Evaluation of antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Rev Bras Farmacogn. 2013; 23, 819–829. DOI: https://doi.org/10.1590/S0102-695X2013000500015

Sharma N, Garg V, Paul A. Antihyperglycemic, antihyperlipidemic and antioxidative potential of Prosopis cineraria bark. Indian Journal of Clinical Biochemistry. 2010; 25, 193-200. DOI: https://doi.org/10.1007/s12291-010-0035-9

Sharma D, Singla YP. Evaluation of antihyperglycemic and antihyperlipidemic activity of Prosopis cineraria (Linn.) in wistar rats. Journal of Scientific and Innovative Research. 2013; 2, 751-758.

George C, Huisamen B, Lochner A. The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J Ethnopharmacol. 2011; 137, 298–304. DOI: https://doi.org/10.1016/j.jep.2011.05.023

Soni, L.K.; Dobhal, M.P.; Arya, D.; Bhagour, K.; Parasher, P.; Gupta, R.S. In vitro and in vivo antidiabetic activity of isolated fraction of Prosopis cineraria against streptozotocin-induced experimental diabetes: A mechanistic study. Biomed. Pharmacother. 2018, 108, 1015–1021. DOI: https://doi.org/10.1016/j.biopha.2018.09.099

Pérez-Matute P, Zulet MA, Martínez JA. Reactive species and diabetes: counteracting oxidative stress to improve health. Current Opinion in Pharmacology. 2009; 9, 6, 771–779. DOI: https://doi.org/10.1016/j.coph.2009.08.005

Unuofin JO, Lebelo SL. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxid Med Cell Longev. 2020;1356893. DOI: https://doi.org/10.1155/2020/1356893.

Shansky, R. M. Are hormones a “female problem” for animal research? Science 2019; 364(6443), 825–826. DOI: https://doi.org/10.1126/science.aaw7570

Effect of the extract of Prosopis ruscifolia (75 mg/kg, p.o.), in the insulin secretion

Downloads

Published

04-04-2022

How to Cite

Kennedy, M. L. ., Arrúa, W., Taboada, T., Ibarrola, D. A., & Campuzano-Bublitz, M. A. (2022). Effect of Prosopis ruscifolia on incretin and insulin secretion in alloxan-induced hyperglycemic rats. Vitae, 29(1). https://doi.org/10.17533/udea.vitae.v29n1a348245

Issue

Section

Natural Products

Most read articles by the same author(s)