Cyanide residues biotreatment and their relation with public health

Authors

  • Ruth M. Agudelo C. University of Antioquia
  • Judith Betancur U. University of Antioquia
  • Carmen L. Jaramillo C. University of Antioquia

DOI:

https://doi.org/10.17533/udea.rfnsp.1012

Keywords:

cyanide, degradation bacteria, environmental and occupational biotreatment risks

Abstract

Objective: To propose a bio-treatment for cyanide residues generated by medico-legal procedures and to identify risk factors from handling. Methodology: cyanide residues, from the Institute of Legal Medicine, Medellin, were characterized by their physical state and identified its management, and risk factors. For the residues degradation 22 pre-essays and 9 bioassays were done with Pseudomonas aeruginosa and Thiobacillus ferrooxidans at different cyanide concentrations. Results: there were failures in all risk factors analyzed, predominating the chemical component which sources of pollution. In studies of degradation, Pseudomonas aeruginosa showed a 87% removal percentage at a concentration of 50 mg / L and Thiobacillus ferrooxidans, 79% removal at a concentration of 500 mg / L. We conducted a technical guide for the management of cyanide residues. Conclusions: The evaluation of the routes of cyanide from seizure to final disposal, were found that the Institute of Forensic Medicine had no documented guidelines on the management of them. Biological treatment with bacteria such as Pseudomonas aeruginosa and Thiobacillus ferrooxidans were efficient in the degradation of cyanide.

|Abstract
= 268 veces | PDF (ESPAÑOL (ESPAÑA))
= 304 veces|

Downloads

Download data is not yet available.

Author Biographies

Ruth M. Agudelo C., University of Antioquia

Sanitary Engineer, Master in Education and Community Development, teacher and researcher at the National School of Public Health, University of Antioquia, Medellín, Colombia.

Judith Betancur U., University of Antioquia

Biologist, specialist in Microbiology, Ruhr Universital (Germany), professor at the Institute of Biology of the University of Antioquia, Medellín, Colombia.

Carmen L. Jaramillo C., University of Antioquia

Biology student, Institute of Biology. Faculty of Exact and Natural Sciences at the University of Antioquia, Medellín, Colombia.

References

(1). Agencia para Sustancias Tóxicas y Registro de Enfermedades. Reseña Toxicológica de Cianuro: Departamento de Salud y Ser-vicios Humanos de e e.u u, Servicio de Salud Pública. Atlanta: a t s d r; 2006. p. 81.

(2). Dumestre A, Chone T. Cyanide degradation Ander alkaline conditions by a strain of Fusarium solani isalated from con-taminated solis. Applied and enviromental microbiology 1997; 63(7):2729-2734 DOI: https://doi.org/10.1128/aem.63.7.2729-2734.1997

(3). Center for disease control and prevention. Emergency prepared-nesand response: Facts about cyanide. Atlanta: Departament of Healt and Human Services; 2004.

(4). Akcil A. Biological treatment of cyanide by natural isolated bacteria Pseudomonas sp In. Mineral Engineering 2008; 16(7):643-649. DOI: https://doi.org/10.1016/S0892-6875(03)00101-8

(5). Sharma V. Oxidation of aqueous cyanide. Environ Sci technol 1998; 32:2608-2613. DOI: https://doi.org/10.1021/es970820k

(6). Akcil A. Destruction of cyanide in gold mill effluents: Biological versus Chemical Treatment. Biotechnology Advances 2003; 21(6):501-511. DOI: https://doi.org/10.1016/S0734-9750(03)00099-5

(7). Kunz D, Chen J. Accumulation of αketo acids as essential com-ponents in cyanide assimilation by Pseudomonas: Applied and environmental microbiology 1998; 64: 4452-4459. DOI: https://doi.org/10.1128/AEM.64.11.4452-4459.1998

(8). Bellini M. Degradación microbiana de Cianuros. [Tesis maestría] San Juan: U.N; 2001. p. 82-87.

(9). Akcil A, Mudder T. Microbial destruction of cyanide wastes in gold mining: process review. Biotechnology Letters 2003; 25:445–450. DOI: https://doi.org/10.1023/A:1022608213814

(10). Montoya C. Estudio de la contaminación por cianuro (NaCN) de las Plantas de Tratamiento de Minerales Auríferos en el Munici-pio de Segovia y Biorremediación de Arenas contaminadas. [Tesis maestría] Medellín: Universidad de Antioquia, 2001. p. 45-51.

(11). Oudjehani K. Natural attenuation potential of cyanide in microbial activity in mine tailings. Applied microbiology and biotechnology 2002; 58:409-415. DOI: https://doi.org/10.1007/s00253-001-0887-2

(12). Nutt SG. Treatment of coke plant wastewater in the coupled predenitrification fluidezed bed process. West Lafayette: Pardue University, 1992. p.7.

(13). Wang C, Kunz D, Venables B. Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas. Applied and environmental microbiology 1996; 62:2195-2197. DOI: https://doi.org/10.1128/aem.62.6.2195-2197.1996

(14). Luque V. Alcaline cyanide biodegradation by Pseudomonas. Biochemicalsociety transactions 2003; 33:168-169.

(15). Guerrero J. Biotecnología en la Disolución y Recuperación de Metales. En: Primer Congreso Peruano de Biotecnología y Bio-ingeniería; Trujillo 12 al 15 de Noviembre de 1998. Trujillo: so-ciedad peruana de biotecnología, 1998.

(16). Restrepo O, Montoya C, Muñoz N. Degradación microbiana de cianuro procedente de plantas de beneficio de oro mediante una cepa nativa de Pseudomonas fluorecens. Dyna Universidad Na-cional Colombia 2006; 73(149):46-51.

(17). Garcés A, Agudelo L, Macias K, Salinas N. Aislamiento de consorcios de microorganismos degradadores de cianuro. Revista Lasallista de investigación 2006; 3(1):7-12.

(18). Agudelo J, Betancur J, Martínez W, Castañeda C, Castaño M, Largo R. Biolixiviación de minerales sulfurosos. Revista Facul-tad de ingeniería U de A 2002; (27):110-22. DOI: https://doi.org/10.17533/udea.redin.326414

(19). Instituto Mi Río. Regional de Antioquia. Perfil ambiental del Río Medellín. Medellín: Inderena; 1995. p. 12 – 39.

(20). Colombia. Unidad de resistencia técnica ambiental. Resolución No. 1074, 28 octubre 1997. Bogotá: Acercar a d a m a; 2003.

(21). Leopold L, Clark F, Hanshaw B, Balsjey J. A procedure for evaluating environmental impact. US Geological sarvery circular 645, D.I. Washington; 1971. DOI: https://doi.org/10.3133/cir645

(22). Figueroa C, Contreras R, Sánchez J. Evaluación de impacto ambiental: un instrumento para el desarrollo. Centro de estudios am-bientales para el desarrollo regional c e a d e s. Cali: Corporación Autónoma de Occidente; 1998. p. 89-90.

(23). MacFaddin J. Pruebas Bioquímicas para la identificación de bacterias de importancia clínica. Argentina: Editorial Médica Pana-mericana; 2003. p. 632-634.

(24). Apha-American Public Health Association. Standard methods for the examination for water and wastewater. 20th ed, Washing-ton;a w w a; w p c f; 2002.

(25). Adjei M, Ohta Y. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World Journal of Microbiolo-gy & Biotechnology 1999; 15:699-704. DOI: https://doi.org/10.1023/A:1008924032039

(26). Patil Y, Paknikar K. Development of a process for biodetoxifica-tion of metal cyanides from wastewaters. Process Biochemistry 2000; 35: 1139–1151. DOI: https://doi.org/10.1016/S0032-9592(00)00150-3

Published

2010-05-27

How to Cite

1.
Agudelo C. RM, Betancur U. J, Jaramillo C. CL. Cyanide residues biotreatment and their relation with public health. Rev. Fac. Nac. Salud Pública [Internet]. 2010 May 27 [cited 2025 Mar. 4];28(1):7-20. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/1012

Issue

Section

Research

Most read articles by the same author(s)