Backpacks with ergonomic quality: Grille to reduce load and posture risks

Authors

DOI:

https://doi.org/10.17533/udea.rfnsp.e355982

Keywords:

ergonomics, product design, military personnel, low back pain, photogrammetry, simulation model

Abstract

Objective: Evaluate the viability of a novel structural grill concept for military training backpacks, intended to reduce the load on the spine and enhance posture during back flexion exercises.

Methods: Phase 1 involved conducting an experimental investigation on six soldiers to collect back flexion data that the participants believed would be used in real-world scenarios. Afterwards, using this data, the postures were digitally simulated to calculate the intradiscal force in the L4/L5 using a 3D biomechanical model.

Results: Using the proposed grid instead of the existing one results in an average 257 newton drop in the compression force on the intervertebral disc, or a 27.18% decrease (p-value <0.001). Similarly, the study demonstrated that using the new grid system results in more neutral postural behavior of back flexion (p-value <0.001).

Conclusion: By shifting some of the weight to other body parts with higher load capacities, this innovative grill idea lessens the strain on the intervertebral discs. This results in a more even distribution of the backpack’s weight over the body. In Colombia, musculoskeletal problems are a public health concern. As a result, it’s critical to produce knowledge that scientists can utilize to help designers create items that are high-quality and ergonomic

|Abstract
= 230 veces | PDF (ESPAÑOL (ESPAÑA))
= 154 veces|

Downloads

Download data is not yet available.

Author Biographies

Vaslak Rojas, Universidad Industrial de Santander

Maestría en diseño y creación Interactiva. Universidad Industrial de Santander. Colombia. vrojas@uis.edu.co

Fernanda Maradei Garcia, Universidad Industrial de Santander

Doctorado en ingeniería, línea ergonomía. Universidad Industrial de Santander. Colombia. mafermar@uis.edu.co

Antonio Santos Bautista, Universidad Industrial de Santander

Diseño industrial. Universidad Industrial de Santander. Colombia. anjosan71@gmail.com

Camilo Rivera Robles, Universidad Industrial de Santander

Diseño industrial. Universidad Industrial de Santander. Colombia. camilori18@hotmail.com

References

1. Waters TR, Putz-Anderson V et al. Revised NIOSH equation for the design and evaluation of manual lifting tasks, Ergonomics. 1993;36(7):749-76. DOI: https://doi. org/10.1080/00140139308967940

2. Waters TR, Putz-Anderson V, Garg A. Applications manual for the revised NIOSH lifting equation. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; 2021. DOI: https://doi.org/10.26616/NIOSHPUB94110revised092021

3. Mudiyanselage SE, Nguyen PHD, et al. Automated workers’ ergonomic risk assessment in manual material handling using sEMG wearable sensors and machine learning. Electronics. 2021;10(20):2558. https://doi.org/10.3390/electronics10202558

.4. Coenen P, Kingma I, Boot CRL et al. Cumulative low back load at work as a risk factor of low back pain: A prospective cohort study- J Occup Rehabil. 2013;23(1):11-18. DOI: https://doi.org/10.1007/s10926-012-9375-z

5. Ngo BPT, Yazdani A, et al. Lifting height as the dominant risk factor for low-back pain and loading during manual materials handling: A scoping review. IISE Trans. Occup. Ergon. Hum. Factors. 2017;5(3-4):158-71. DOI: https://doi.org/10.1080/24725838.2017.1338633

6. Andersen LL, Fallentin N, Ajslev JZN, et al. Association between occupational lifting and day-to-day change in low-back pain intensity based on company records and text messages. Scand. J. Work, Environ. & Health. 2016;43(1):68-74. DOI: https://doi.org/10.5271/sjweh.3592

7. Riojas Chavez TR, Salazar Chero RP, Tacza Alonzo GA. Nivel de factores de riesgos ocupacionales en el Batallón de Ingeniería “Pachacútec” N.° 21 del Ejército del Perú, Lima, 2019 [trabajo de grado]. Universidad César Vallejo [internet]; 2019 [citado 2022 abr. 20]. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/57473

8. Cohen SP, Gallagher RM, S. Davis A, et al. Carragee, spine-area pain in military personnel: A review of epidemiology, etiolo gy, diagnosis, and treatment. Spine J. 2012;12(9):833-42. DOI: https://doi.org/10.1016/j.spinee.2011.10.010

9. Toro Lopez S, Restrepo Lugo CM. Características sociales, demográficas de las hernias discales a nivel lumbar en el Hospital Militar Central [trabajo de grado]. Universidad Militar Nueva Granada [internet]; 2017 [citado 2022 abr. 20]. Disponible en: https://repository. unimilitar.edu.co/handle/10654/20394

10. Corrales Corrales KM. Prevalencia de patologías músculoesqueléticas en los militares de la brigada de fuerzas especiales N.-9 Patria en el período agosto 2015-agosto 2016 [tesis de licenciada]. Universidad Técnica de Ambato [internet]; 2017 [citado 2022 abr. 20].. Disponible en: https://repositorio.uta.edu.ec/bitstream/123456789/26130/2/TESIS%20Katerine%20Marcela%20Corrales%2012%20-%20copia.pdf

11. Gun BK, Banaag A, et al. Prevalence and risk factors for musculoskeletal back injury among U.S. Army personnel. Mil. Medicine. 2021. Military Medicine. 2022;187(7-8):e814–e820. DOI: https://doi.org/10.1093/milmed/usab217

12. Sidiq M, Alenazi W, Kashoo F, et al. Prevalence of non-specific chronic low-back pain and risk factors among male soldiers in Saudi Arabia. PeerJ. 2021;9:e12249. DOI: https://doi.org/10.7717/peerj.12249

13. Marras W. The future of research in understanding and controlling work-related low back disorders. Ergonomics. 2005;48(5):464- 77. DOI: https://doi.org/10.1080/00140130400029175

14. Van Dieën JH, M. Dekkers JJ, Groen V et al. Within-subject variability in low back load in a repetitively performed, mildly constrained lifting task. Spine [internet]. 2001 [citado 2022 feb. 15]; 26(16):1799-804. Disponible en: https://journals.lww.com/spinejournal/fulltext/2001/08150/within_subject_variability_in_low_back_load_in_a.16.aspx

15. Coenen P, Gouttebarge V, Van der Burght ASAM, et al. The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occup Environ Med. 2014;71(12):871- 77. DOI: https://doi.org/10.1136/oemed-2014-102346

16. Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon). 1996;11(1):1-15. DOI: https://doi.org/10.1016/0268-0033(95)00035-6

17. Heuch I, Heuch K et al. Physical activity level at work and risk of chronic low back pain: A follow-up in the Nord-Trøndelag Health Study. PLOS ONE. 2017;12(4):e0175086. DOI: https://doi.org/10.1371/journal.pone.0175086

18. Goncharenko IM, Komleva NE, Chekhonatsky AA. Lower back pain at workplace: Prevalence and risk factors. Russ. Open Med. J. 2020;9(2):1-6. DOI: https://doi.org/10.15275/rusomj.2020.0207

19. Waqqash E, Hafiz E, et al. A Narrative review: Risk Factors of low back pain in military personnel/recruits. Int. J. Eng. Technol. 2018;7(4.15):159-72. DOI: https://doi.org/10.14419/ijet.v7i4.15.21439

20. Travascio F, Eltoukhy M, Asfour S. Spine biomechanics: A review of current approaches. Spine Res. 2015;1(1):1-8. https://doi.org/10.21767/2471-8173.100004

21. Marras WS, Davis KG, Ferguson SA, et al. Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine [internet]. 2001 [citado 2022 ene. 9]; 26(23):2566-74. Disponible en: https://journals.lww.com/spinejournal/Fulltext/2001/12010/Spine_Loading_Characteristics_of_ Patients_With_Low.9.aspx

22. Almoallim H, Alwafi S, Albazli K, et al. A simple approach of low back pain. Int. J. Clin. Med. 2014;05(17):1087-98. DOI: https://doi.org/10.4236/ijcm.2014.517139

23. Mencías Hurtado B, Rodríguez Hernández JL. Trastornos del sueño en el paciente con dolor crónico. Rev. Soc. Esp. Dolor [internet]. 2012 [citado 2022 feb. 25]; 19(6):332-4. Disponible en: https://scielo.isciii.es/scielo.php?pid=S1134-80462012000600008&script=sci_arttext&tlng=en

24. Valenciano Nadal L. El dolor crónico unido a la depresión. NPunto [internet]. 2021 [citado 2022 abr. 13]; 4(41):59- 79. Disponible en: https://www.npunto.es/content/src/pdfarticulo/6114ec5344bf1art3.pdf

25. Colombia, Ministerio de Defensa. Norma técnica parrilla metálica para morral de campaña NTMD-0198-A3. Oficina de Normas Técnicas del Ministerio de Defensa [internet]; 2011 [citado 2022 abr. 13]. Disponible en: https://www.colombiacompra.gov.co/sites/default/files/archivos_amp/amp_intendencia/especificaciones/NTMD-0198-A3.pdf

26. Sánchez Llano C. Análisis de usabilidad del morral de campaña de los soldados de infantería Batallón San Juan del Corral Colombia [trabajo de grado]. Universidad Pontificia Bolivariana [internet]. 2016 [citado 2023 dic. 4]. Disponible en: https://repository.upb.edu.co/handle/20.500.11912/3318

27. Guerrero Liñeiro AM, Gómez López MP. VIII Estudio Nacional de Dolor. Prevalencia del dolor cronico en Colombia. Asociación Colombia para el Estudio del Dolor [internet]; 2014 [citado 2022 feb. 21].Disponible en: https://www.consultorsalud.com/wpcontent/uploads/2014/11/viii_estudio_prevalencia_dolor_cronico_en_colombia_publicacion_pagina_aced_2014.pdf

28. Beltrán Albarracín DA. Validación de kinovea como herramienta para el análisis de posturas en tareas sedentarias: validación de kinovea con fotogrametría [trabajo de grado]. [Quito:] Escuela Politécnica Nacional [internet]. 2022 [citado 2024 ene. 4]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/23229

29. Blanchonette P. Jack human modelling tool: A review. Australian Government. Department of Defence [internet]. 2010 [citado 2024 ene. 4]. Disponible en: https://www.semanticscholar.org/paper/Jack-Human-Modelling-Tool%3A-A-Review-Blanchonette/01aa996a5f0545403959ddb3025d4f1e8990126f

30. Herman P. Statics of the Body. En: Herman P, Physics of the human body, Biological and Medical Physics, Biomedical Engineering. Cham: Springer International Publishing; 2016. pp. 39-94. DOI: https://doi.org/10.1007/978-3-319-23932-3_2

31. Bruno G, Burkhart K, Allaire B, et al. Spinal Loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J Bone Miner Res. 2017;32(6):1282-90. DOI: https://doi.org/10.1002/jbmr.3113

32. Iyer S, Christiansen BA, Roberts BJ, et al. A biomechanical model for estimating loads on thoracic and lumbar vertebrae. Clin Biomech. 2010;25(9):853-8. DOI: https://doi.org/10.1016/j.clinbiomech.2010.06.010

33. Antwi-Afari MF, Li H, Edwards DJ, et al. Biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. Autom. Constr. 2017;83:41-47. DOI: https://doi.org/10.1016/j.autcon.2017.07.007

34. Asociación Médica Mundial (ANM). Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos [internet]; 2024 may. 23 [citado 2023 nov. 10]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

35. Stanton, J. The Belmont Report: Ethical principles and guidelines for the protection of human subjects of research (No. DHEW Publication No.(OS) 78-0012). Washington; 1978.

36. Colombia, Ministerio de Salud. Resolución 8430, por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud (1993 oct. 4).

37. Conforti I, Mileti Z, et al. Measuring biomechanical risk in lifting load tasks through wearable system and machine-learning approach. Sensors. 2020;20(6):1557. DOI: https://doi.org/10.3390/s20061557

38. Arjmand N, Shirazi-Adl A. Biomechanics of changes in lumbar posture in static lifting. Spine. 2005;30(23):2637-48. DOI: https://doi.org/10.1097/01.brs.0000187907.02910.4f

39. Punnett L, Wegman DH. Work-related musculoskeletal disorders: The epidemiologic evidence and the debate. J Electromyogr Kinesiol. 2004;14(1):13-23. DOI: https://doi.org/10.1016/j.jelekin. 2003.09.015

40. McAtamney L, Nigel Corlett E. RULA: A survey method for the investigation of work-related upper limb disorders. Appl Ergon. 1993;24(2):91-99. DOI: https://doi.org/10.1016/0003-6870(93)90080-s

41. Karhu O, Kansi P, Kuorinka I. Correcting working postures in industry: A practical method for analysis Applied Ergonomics. 1977:8(4):199-201. DOI: https://doi.org/10.1016/0003-6870(77)90164-8

42. Hans-Joachim W, Neef, P, Caimi, M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine [internet]. 1999 [citado 2024 ene. 5]; 24(8):755-62. Disponible en: https://journals.lww.com/spinejournal/abstract/1999/04150/new_in_vivo_measurements_of_pressures_in_the.5.aspx

43. Abarqhouei NS, Nasab HH. Total ergonomics and its impact in musculoskeletal disorders and quality of work life and productivity. Open J. Saf. Sci. Technol. 2011;1(3):79-88. DOI: https://doi.org/10.4236/ojsst.2011.13008

44. Afroz S, Haque, MI. Ergonomics in the workplace for a better quality of work life. en: Muzammil M, Khan AA, Hasan F, editors. Ergonomics for improved productivity. Design science and innovation. Singapore: Springer; 2021. DOI: https://doi.org/10.1007/978-981-15-9054-2_

Published

2024-08-13

How to Cite

1.
Rojas V, Maradei Garcia F, Santos Bautista A, Rivera Robles C. Backpacks with ergonomic quality: Grille to reduce load and posture risks. Rev. Fac. Nac. Salud Pública [Internet]. 2024 Aug. 13 [cited 2025 Feb. 8];42:e355982. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/355982

Issue

Section

Salud de los trabajadores

Categories