Mochilas com qualidade ergonômica: grelha para reduzir o risco de carga e postura

Autores

DOI:

https://doi.org/10.17533/udea.rfnsp.e355982

Palavras-chave:

ergonomia, design de produto, mochilas de campo, pessoal militar, riscos ocupacionais, saúde e segurança ocupacional

Resumo

Objetivo: Validar uma nova proposta de grelha estrutural para mochilas militares de campo, projetada para reduzir a carga sobre a
coluna vertebral e melhorar a postura de flexão das costas.
Metodologia: Na fase 1, foi realizado um estudo experimental com 12 soldados (6 usando a mochila atual e 6 usando a proposta), para obter os dados de flexão das costas assumidos pelos participantes em condições reais de uso. Em seguida, com essas informações, as posturas foram simuladas digitalmente para estimar, com um modelo biomecânico 3D, a força intradiscal em L4/L5.
Resultados: O estudo mostra uma redução média de 257 N da força de compressão no disco intervertebral, o que corresponde a uma diminuição de 27,18% ao usar a grade proposta em comparação com a atual (p-valor < 0,001). O estudo também mostrou que o comportamento postural de flexão das costas é mais neutro quando se usa o novo sistema de grade (p-valor < 0,001).
Conclusão: Essa nova proposta de grade reduz a carga sobre os discos intervertebrais, desviando parte do peso para outros segmentos do corpo com maior capacidade de carga. Dessa forma, obtém-se uma melhor distribuição da carga da mochila sobre o corpo. Os distúrbios musculoesqueléticos são um problema de saúde pública na Colômbia. Portanto, é importante gerar conhecimento científico útil para os designers, promovendo assim o desenvolvimento de produtos com qualidade ergonômica

|Resumo
= 231 veces | PDF (ESPAÑOL (ESPAÑA))
= 156 veces|

Downloads

Não há dados estatísticos.

Biografia do Autor

Vaslak Rojas, Universidad Industrial de Santander

Maestría en diseño y creación Interactiva. Universidad Industrial de Santander. Colombia. vrojas@uis.edu.co

Fernanda Maradei Garcia, Universidad Industrial de Santander

Doctorado en ingeniería, línea ergonomía. Universidad Industrial de Santander. Colombia. mafermar@uis.edu.co

Antonio Santos Bautista, Universidad Industrial de Santander

Diseño industrial. Universidad Industrial de Santander. Colombia. anjosan71@gmail.com

Camilo Rivera Robles, Universidad Industrial de Santander

Diseño industrial. Universidad Industrial de Santander. Colombia. camilori18@hotmail.com

Referências

1. Waters TR, Putz-Anderson V et al. Revised NIOSH equation for the design and evaluation of manual lifting tasks, Ergonomics. 1993;36(7):749-76. DOI: https://doi. org/10.1080/00140139308967940

2. Waters TR, Putz-Anderson V, Garg A. Applications manual for the revised NIOSH lifting equation. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; 2021. DOI: https://doi.org/10.26616/NIOSHPUB94110revised092021

3. Mudiyanselage SE, Nguyen PHD, et al. Automated workers’ ergonomic risk assessment in manual material handling using sEMG wearable sensors and machine learning. Electronics. 2021;10(20):2558. https://doi.org/10.3390/electronics10202558

.4. Coenen P, Kingma I, Boot CRL et al. Cumulative low back load at work as a risk factor of low back pain: A prospective cohort study- J Occup Rehabil. 2013;23(1):11-18. DOI: https://doi.org/10.1007/s10926-012-9375-z

5. Ngo BPT, Yazdani A, et al. Lifting height as the dominant risk factor for low-back pain and loading during manual materials handling: A scoping review. IISE Trans. Occup. Ergon. Hum. Factors. 2017;5(3-4):158-71. DOI: https://doi.org/10.1080/24725838.2017.1338633

6. Andersen LL, Fallentin N, Ajslev JZN, et al. Association between occupational lifting and day-to-day change in low-back pain intensity based on company records and text messages. Scand. J. Work, Environ. & Health. 2016;43(1):68-74. DOI: https://doi.org/10.5271/sjweh.3592

7. Riojas Chavez TR, Salazar Chero RP, Tacza Alonzo GA. Nivel de factores de riesgos ocupacionales en el Batallón de Ingeniería “Pachacútec” N.° 21 del Ejército del Perú, Lima, 2019 [trabajo de grado]. Universidad César Vallejo [internet]; 2019 [citado 2022 abr. 20]. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/57473

8. Cohen SP, Gallagher RM, S. Davis A, et al. Carragee, spine-area pain in military personnel: A review of epidemiology, etiolo gy, diagnosis, and treatment. Spine J. 2012;12(9):833-42. DOI: https://doi.org/10.1016/j.spinee.2011.10.010

9. Toro Lopez S, Restrepo Lugo CM. Características sociales, demográficas de las hernias discales a nivel lumbar en el Hospital Militar Central [trabajo de grado]. Universidad Militar Nueva Granada [internet]; 2017 [citado 2022 abr. 20]. Disponible en: https://repository. unimilitar.edu.co/handle/10654/20394

10. Corrales Corrales KM. Prevalencia de patologías músculoesqueléticas en los militares de la brigada de fuerzas especiales N.-9 Patria en el período agosto 2015-agosto 2016 [tesis de licenciada]. Universidad Técnica de Ambato [internet]; 2017 [citado 2022 abr. 20].. Disponible en: https://repositorio.uta.edu.ec/bitstream/123456789/26130/2/TESIS%20Katerine%20Marcela%20Corrales%2012%20-%20copia.pdf

11. Gun BK, Banaag A, et al. Prevalence and risk factors for musculoskeletal back injury among U.S. Army personnel. Mil. Medicine. 2021. Military Medicine. 2022;187(7-8):e814–e820. DOI: https://doi.org/10.1093/milmed/usab217

12. Sidiq M, Alenazi W, Kashoo F, et al. Prevalence of non-specific chronic low-back pain and risk factors among male soldiers in Saudi Arabia. PeerJ. 2021;9:e12249. DOI: https://doi.org/10.7717/peerj.12249

13. Marras W. The future of research in understanding and controlling work-related low back disorders. Ergonomics. 2005;48(5):464- 77. DOI: https://doi.org/10.1080/00140130400029175

14. Van Dieën JH, M. Dekkers JJ, Groen V et al. Within-subject variability in low back load in a repetitively performed, mildly constrained lifting task. Spine [internet]. 2001 [citado 2022 feb. 15]; 26(16):1799-804. Disponible en: https://journals.lww.com/spinejournal/fulltext/2001/08150/within_subject_variability_in_low_back_load_in_a.16.aspx

15. Coenen P, Gouttebarge V, Van der Burght ASAM, et al. The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occup Environ Med. 2014;71(12):871- 77. DOI: https://doi.org/10.1136/oemed-2014-102346

16. Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon). 1996;11(1):1-15. DOI: https://doi.org/10.1016/0268-0033(95)00035-6

17. Heuch I, Heuch K et al. Physical activity level at work and risk of chronic low back pain: A follow-up in the Nord-Trøndelag Health Study. PLOS ONE. 2017;12(4):e0175086. DOI: https://doi.org/10.1371/journal.pone.0175086

18. Goncharenko IM, Komleva NE, Chekhonatsky AA. Lower back pain at workplace: Prevalence and risk factors. Russ. Open Med. J. 2020;9(2):1-6. DOI: https://doi.org/10.15275/rusomj.2020.0207

19. Waqqash E, Hafiz E, et al. A Narrative review: Risk Factors of low back pain in military personnel/recruits. Int. J. Eng. Technol. 2018;7(4.15):159-72. DOI: https://doi.org/10.14419/ijet.v7i4.15.21439

20. Travascio F, Eltoukhy M, Asfour S. Spine biomechanics: A review of current approaches. Spine Res. 2015;1(1):1-8. https://doi.org/10.21767/2471-8173.100004

21. Marras WS, Davis KG, Ferguson SA, et al. Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine [internet]. 2001 [citado 2022 ene. 9]; 26(23):2566-74. Disponible en: https://journals.lww.com/spinejournal/Fulltext/2001/12010/Spine_Loading_Characteristics_of_ Patients_With_Low.9.aspx

22. Almoallim H, Alwafi S, Albazli K, et al. A simple approach of low back pain. Int. J. Clin. Med. 2014;05(17):1087-98. DOI: https://doi.org/10.4236/ijcm.2014.517139

23. Mencías Hurtado B, Rodríguez Hernández JL. Trastornos del sueño en el paciente con dolor crónico. Rev. Soc. Esp. Dolor [internet]. 2012 [citado 2022 feb. 25]; 19(6):332-4. Disponible en: https://scielo.isciii.es/scielo.php?pid=S1134-80462012000600008&script=sci_arttext&tlng=en

24. Valenciano Nadal L. El dolor crónico unido a la depresión. NPunto [internet]. 2021 [citado 2022 abr. 13]; 4(41):59- 79. Disponible en: https://www.npunto.es/content/src/pdfarticulo/6114ec5344bf1art3.pdf

25. Colombia, Ministerio de Defensa. Norma técnica parrilla metálica para morral de campaña NTMD-0198-A3. Oficina de Normas Técnicas del Ministerio de Defensa [internet]; 2011 [citado 2022 abr. 13]. Disponible en: https://www.colombiacompra.gov.co/sites/default/files/archivos_amp/amp_intendencia/especificaciones/NTMD-0198-A3.pdf

26. Sánchez Llano C. Análisis de usabilidad del morral de campaña de los soldados de infantería Batallón San Juan del Corral Colombia [trabajo de grado]. Universidad Pontificia Bolivariana [internet]. 2016 [citado 2023 dic. 4]. Disponible en: https://repository.upb.edu.co/handle/20.500.11912/3318

27. Guerrero Liñeiro AM, Gómez López MP. VIII Estudio Nacional de Dolor. Prevalencia del dolor cronico en Colombia. Asociación Colombia para el Estudio del Dolor [internet]; 2014 [citado 2022 feb. 21].Disponible en: https://www.consultorsalud.com/wpcontent/uploads/2014/11/viii_estudio_prevalencia_dolor_cronico_en_colombia_publicacion_pagina_aced_2014.pdf

28. Beltrán Albarracín DA. Validación de kinovea como herramienta para el análisis de posturas en tareas sedentarias: validación de kinovea con fotogrametría [trabajo de grado]. [Quito:] Escuela Politécnica Nacional [internet]. 2022 [citado 2024 ene. 4]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/23229

29. Blanchonette P. Jack human modelling tool: A review. Australian Government. Department of Defence [internet]. 2010 [citado 2024 ene. 4]. Disponible en: https://www.semanticscholar.org/paper/Jack-Human-Modelling-Tool%3A-A-Review-Blanchonette/01aa996a5f0545403959ddb3025d4f1e8990126f

30. Herman P. Statics of the Body. En: Herman P, Physics of the human body, Biological and Medical Physics, Biomedical Engineering. Cham: Springer International Publishing; 2016. pp. 39-94. DOI: https://doi.org/10.1007/978-3-319-23932-3_2

31. Bruno G, Burkhart K, Allaire B, et al. Spinal Loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J Bone Miner Res. 2017;32(6):1282-90. DOI: https://doi.org/10.1002/jbmr.3113

32. Iyer S, Christiansen BA, Roberts BJ, et al. A biomechanical model for estimating loads on thoracic and lumbar vertebrae. Clin Biomech. 2010;25(9):853-8. DOI: https://doi.org/10.1016/j.clinbiomech.2010.06.010

33. Antwi-Afari MF, Li H, Edwards DJ, et al. Biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. Autom. Constr. 2017;83:41-47. DOI: https://doi.org/10.1016/j.autcon.2017.07.007

34. Asociación Médica Mundial (ANM). Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos [internet]; 2024 may. 23 [citado 2023 nov. 10]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

35. Stanton, J. The Belmont Report: Ethical principles and guidelines for the protection of human subjects of research (No. DHEW Publication No.(OS) 78-0012). Washington; 1978.

36. Colombia, Ministerio de Salud. Resolución 8430, por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud (1993 oct. 4).

37. Conforti I, Mileti Z, et al. Measuring biomechanical risk in lifting load tasks through wearable system and machine-learning approach. Sensors. 2020;20(6):1557. DOI: https://doi.org/10.3390/s20061557

38. Arjmand N, Shirazi-Adl A. Biomechanics of changes in lumbar posture in static lifting. Spine. 2005;30(23):2637-48. DOI: https://doi.org/10.1097/01.brs.0000187907.02910.4f

39. Punnett L, Wegman DH. Work-related musculoskeletal disorders: The epidemiologic evidence and the debate. J Electromyogr Kinesiol. 2004;14(1):13-23. DOI: https://doi.org/10.1016/j.jelekin. 2003.09.015

40. McAtamney L, Nigel Corlett E. RULA: A survey method for the investigation of work-related upper limb disorders. Appl Ergon. 1993;24(2):91-99. DOI: https://doi.org/10.1016/0003-6870(93)90080-s

41. Karhu O, Kansi P, Kuorinka I. Correcting working postures in industry: A practical method for analysis Applied Ergonomics. 1977:8(4):199-201. DOI: https://doi.org/10.1016/0003-6870(77)90164-8

42. Hans-Joachim W, Neef, P, Caimi, M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine [internet]. 1999 [citado 2024 ene. 5]; 24(8):755-62. Disponible en: https://journals.lww.com/spinejournal/abstract/1999/04150/new_in_vivo_measurements_of_pressures_in_the.5.aspx

43. Abarqhouei NS, Nasab HH. Total ergonomics and its impact in musculoskeletal disorders and quality of work life and productivity. Open J. Saf. Sci. Technol. 2011;1(3):79-88. DOI: https://doi.org/10.4236/ojsst.2011.13008

44. Afroz S, Haque, MI. Ergonomics in the workplace for a better quality of work life. en: Muzammil M, Khan AA, Hasan F, editors. Ergonomics for improved productivity. Design science and innovation. Singapore: Springer; 2021. DOI: https://doi.org/10.1007/978-981-15-9054-2_

Publicado

2024-08-13

Como Citar

1.
Rojas V, Maradei Garcia F, Santos Bautista A, Rivera Robles C. Mochilas com qualidade ergonômica: grelha para reduzir o risco de carga e postura. Rev. Fac. Nac. Salud Pública [Internet]. 13º de agosto de 2024 [citado 12º de fevereiro de 2025];42:e355982. Disponível em: https://revistas.udea.edu.co/index.php/fnsp/article/view/355982

Edição

Seção

Salud de los trabajadores

Categorias