Synthesis of Libethenite through hydrothermal reactions

Authors

  • Germán Sierra Gallego Universidad Nacional de Colombia
  • Adriana Echavarría Universidad de Antioquia
  • Luz Amparo Palacio Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.16004

Keywords:

Libethenite, copper phosphates, hydrothermal synthesis

Abstract

The mineral Libethenite Cu2 (PO4 )(OH) was prepared through hydrothermal reaction under milder conditions than those previously reported. The product was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and atomic absorption (AA). The crystal data were determined by X-ray crystallographic studies, which can be summarized as follows: space group Pnnm, a = 8,071(2), b = 8,403(4), c = 5,898(3) Å, V = 399 Å3 and Z = 4. Thermal analysis and X-ray diffraction studies showed that the solid is stable up to 580 oC. At higher temperatures the Libetinita decomposes in Cu4 O(PO4 )2 and water.

|Abstract
= 114 veces | PDF (ESPAÑOL (ESPAÑA))
= 87 veces|

Downloads

Download data is not yet available.

Author Biographies

Germán Sierra Gallego, Universidad Nacional de Colombia

Escuela de Ingeniería de Materiales,

Adriana Echavarría, Universidad de Antioquia

Instituto de Química y Facultad de Ingeniería Química

Luz Amparo Palacio, Universidad de Antioquia

Instituto de Química y Facultad de Ingeniería Química

References

A. Choudhury, S. Natarajan. “A new threedimensional open-framework iron (III) phosphate, [C2N2H10][Fe2(HPO4)4]” International Journal of Inorganic Materials. Vol. 2. 2000. pp. 217-223. DOI: https://doi.org/10.1016/S1466-6049(00)00007-6

G. Alptekin, A. M. Herring, D. L. Williamson. “Methane Partial Oxidation by Unsupported and Silica Supported Iron Phosphate Catalysts Influence of Reaction Conditions and Co-Feeding of Water on Activity and Selectivity”. Journal of Catalysis. Vol. 181. 1999. pp. 104-112. DOI: https://doi.org/10.1006/jcat.1998.2297

F. Cavani, A. Tanguy, F. Trifirò, M. Koutrev. “Effect of Antimony on the Chemical–Physical Features and Reactivity in Isobutyric Acid Oxidehydrogenation of Keggin-Type Heteropolycompounds”. Journal of Catalysis, Vol. 174. 1998. pp. 231-241. DOI: https://doi.org/10.1006/jcat.1998.1983

M. Ai, K. Ohdan. “Effects of differences in the structures of iron phosphates on the catalytic action in the oxidative dehydrogenation of lactic acid to pyruvic acid” Applied Catalysis A. Vol. 165. 1997. pp. 461-465. DOI: https://doi.org/10.1016/S0926-860X(97)00227-5

J. Le Bideau, C. Payen, P. Palvadeu, B. BuJoli. “Preparation,structure and magnetic properties of copper (II) phosphonates. Beta-CUII(CH3PO3), an original there dimensional structure with a chanel type arrangement” Inorg. Chem. Vol. 33. 1994. pp. 4885. DOI: https://doi.org/10.1021/ic00100a011

D. M. Poojary, B. Zhang, A. J. Clearfield. “A new sodium zinc 1,4-butylenediphosphonate with polar pillar-like open-framework”. Am. Chem. Soc. Vol. 119. 1997. pp. 12550.

O. U. Yakubovich. “Synthesis of Libethenite” Kristallografia, Krisa. Vol. 38. 1993. pp. 63-70.

R. Kumar, A. Bhaumik, “Synthesis and characterization of surface-modified and organic-functionalized MCM- 41 type ordered mesoporous materials” Nature. Vol. 381. 1996. p. 298.

J. C. Jansen, S. T. Wilson, Introduction to Zeolite Science and Practice. Elsevier. Vol. 58. 1991. pp. 77. DOI: https://doi.org/10.1016/S0167-2991(08)63601-0

T. Roisnel, J. Rodríguez-Carvajal, WINPLOTR, Laboratoire Léon Brillouin (CEA-CNR). Centre D’ètudes de Saclay. 91191 Gif-Sur-Yvette. Cedes (France) and Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR6511). Univertité de Rennes 1. 35042 Rennex Cedex (France).

R. Shirley. The CRYSFIRE System for Automatic Powder Indexing: User’s Manual. Ed. The Lattice

Press. Guildford. Surrey GU2 5NL.England.1999. pp. 1-37.

J. W. Visser. “A Jully Automatic Program for Finding the Unit Cell From Powder Data” J. Appl. Crystallogr. Vol. 2. 1969. pp. 89-95. DOI: https://doi.org/10.1107/S0021889869006649

P. E. Werner, L. Enksson, M. Wegtdahl. “TREOR, a Sumi- Exhaustive Trial and Error Powder Indexing Program for All Symmetries”, J. Appl. Crystallogr. Vol. 18. 1985. pp. 367-370. DOI: https://doi.org/10.1107/S0021889885010512

J. Laugier, B. Bochu, CHECKCELL, Laboratoire des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble (INPG) Domaine Universitaire BP 46. 38402 Saint Martin d´Héres. 2000.

R. L. Frost , T. Kloprogge, P. A. Williams, W. Martens, T. E. Johnson, P. Leverett. “Vibrational spectroscopy of the basic copper phosphate minerals: pseudomalachite, ludjibaite and reichenbachite”. Spectrochimica Acta Part A. Vol. 58. 2002. pp 2861-/2868. DOI: https://doi.org/10.1016/S1386-1425(02)00034-3

M. Brunel-Laügt, A. Durif, J.C. Guitel, “Structure cristalline de Cu4(PO4)2O”, Journal of Solid State Chemistry. Vol 25. 1978. pp. 39-47. DOI: https://doi.org/10.1016/0022-4596(78)90041-5

G. A. Sierra, A. Echavarria Isaza, L. A. Palacio, C. Saldarriaga, “Síntesis y Caracterización de un nuevo material tipo fosfato de cobre”. Rev. Fac. de Ing. Universidad de Antioquia. Vol 27. 2002. pp. 104-109.

W. Kraus, G. Nolze. POWDERCELL for Windows. Version 2.3. Federal Institute for Materials Research and Testing Rodower Chausse 5. 12489. Berlin. Germany. 1999.

POV-RAYTM.Version 3.1. may 1999.

Published

2013-07-23

How to Cite

Sierra Gallego, G. ., Echavarría, A., & Palacio, L. A. (2013). Synthesis of Libethenite through hydrothermal reactions. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 9–17. https://doi.org/10.17533/udea.redin.16004

Most read articles by the same author(s)