Electric power management in a microgrid analyzing photovoltaic arrays and a turbine-generator system
DOI:
https://doi.org/10.17533/udea.redin.20210951Keywords:
Central composition design, microgrid, optimization, process simulation, regressionAbstract
One of the priority objectives of microgrids is to achieve energy self-sufficiency, generally resorting to distributed generation sources and backup systems; however, they are usually connected to conventional electrical networks that ensure supply to the loads. Addressing this problem, this work presents a proposal (managing elements) to minimize the dependence of power from the external electrical system in the months of greatest demand and thus guarantee the supply of the other months. The proposed methodology compares two statistical techniques: central composition design with 20 simulated experimental replicas and regression with 28. In both cases, the monthly average purchased power is analyzed as a primary response and its standard deviation as a secondary. The study variables are seven photovoltaic arrays and the feed characteristics of the turbine-generator storage of the microgrid of the Center for Development of Renewable Energies (CEDER), belonging to the Center for Energy Research, Environmental and Technological (CIEMAT). The results, with high predictive quality supported by indexes of approach to the real values of solar radiation and the operation of the turbine-generator binomial, provide regions where CEDER has the possibility of increasing the capacities of solar systems and/or modifying the geometry of the mini-hydraulics supply according to your specific conditions.
Downloads
References
C. Bordons, F. García-Torres, and L. Valverde, “Gestión Óptima de la Energía en Microrredes con Generación Renovable,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 12, no. 2, Abr-Jun. 2015. [Online]. Available: https://doi.org/10.1016/j.riai.2015.03.001
S. M. Hakimi, S. M. Moghaddas-Tafreshi, H. Hassanzadehfard, G. A. Taylor, and M. M. Alamuti, Optimization of a reliable combined cooling, heat and power microgrid system. Vienna, Austria: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013.
T. Khatib, A. Mohamed, and K. Sopian, “A review of photovoltaic systems size optimization techniques,” Renewable and Sustainable Energy Reviews, vol. 22, Jul. 2013. [Online]. Available: https://doi.org/10.1016/j.rser.2013.02.023
R. Lamedica, E. Santini, A. Ruvio, L. Palag, and I. Rossetta, “A MILP methodology to optimize sizing of PV - Wind renewable energy systems,” Energy, vol. 165, no. Parte B, Dic. 15, 2018. [Online]. Available: https://doi.org/10.1016/j.energy.2018.09.087
O. Ekren and B. Y. Ekren, “Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology,” Applied Energy, vol. 85, no. 11, Nov. 2008. [Online]. Available: https://doi.org/10.1016/j.apenergy.2008.02.016
F. Kessaissiaet al., “Factorial design and response Surface optimization for modeling photovoltaic module parameters,” Energy Reports, vol. 6, no. 3, Feb. 2020. [Online]. Available: https://doi.org/10.1016/j.egyr.2019.11.016
L. Jamed and R. López. (2018, Sep. 17,) Programa simulador para la optimización de la generación solar fv con la integración del respaldo turbina-generador. Registro público del derecho de autor: 03-2018-082811402400-01. [Online]. Available: https://www.consultasindautor.cultura.gob.mx/
R. Ranjit, A primer on the Taguchi method. Estados Unidos: Society of manufacturing engineers, 2010.
N. a Uribe-Pérez, M. Latorre, I. Angulo, and D. de la Veg, “Aprovechamiento de los recursos renovables e integración de las tics: ejemplo práctico de una microred eléctrica,” in III Congreso Ibero-Americano de Empreendedorismo, Energía, Ambiente e Tecnología, J. S. Brake, Ed. Instituto Politécnico de Bragança, 2017, pp. 161–167.
S. Kay, Intuitive Probability and random processes using MATLAB, 4th ed. Springer, 2012.
G. F. Figueroa, “Optimización de una superficie de respuesta utilizando JMP IN,” Mosaicos Matemáticos, no. 11, Dic. 2003. [Online]. Available: https://semana.mat.uson.mx/Memorias/gudelia.pdf
G. Box and K. Wilson, “On the experimental attainment of optimum conditions,” Journal of the Royal Statistical Society, Serie B, vol. 13, no. 1, 1951. [Online]. Available: https://www.jstor.org/stable/2983966
A. Aktinson, A. Donev, and R. Tobias, Optimum Experimental Designs, With SAS. Oxford University Press, 2007.
O. Köksoy and N. Doganaksoy, “Joint Optimization of Mean and Standard Deviation Using Response Surface Methods,” Journal of Quality Technology, vol. 35, no. 3, 2003. [Online]. Available: https://doi.org/10.1080/00224065.2003.11980218
R. Myers and D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. New York: John Wiley and Sons, Inc., 1995.
D. Montgomery, Diseño y análisis de experimentos, 2nd ed. México: Limusa, 2006.
(2009, Oct.) JMP Release 8.0.2. SAS Institute Inc. [Online]. Available: jmp.com/support/notes/41/addl/fusion_41004_6_releasenotes8_0
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.