Co-variational thinking in optimization situations modeled by dynamic geometry environments

Authors

  • Nelson Javier Rueda Rueda Industrial University of Santander
  • Sandra Evely Parada Rico Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.unipluri.326184

Keywords:

modeling situations, mental actions, levels of reasoning

Abstract

This article presents some of the findings of a study developed in a pre-calculus course with students re-entering the university, with the intention of characterizing cognitive abilities associated with processes of representation of variation phenomena that can be enhanced through problem solving mediated by digital technologies. In this article we show the initial results of a case study which describes the way in which two students reason in a co-variational manner while facing optimization situations modeled by a dynamic geometry environment. The co-variational reasoning was described using the conceptual framework proposed by Carlson, Jacobs, Coe, Larsen and Hsu (2003). The students’ performance allowed demonstrating the possible advantages of using interactive software in modifying their behaviors linked to co-variational reasoning. Similarly, there are certain characteristics that may be related to the permanence of students in certain levels of reasoning, as well as their flexibility.

|Abstract
= 287 veces | PDF (ESPAÑOL (ESPAÑA))
= 179 veces|

Downloads

Download data is not yet available.

Author Biographies

Nelson Javier Rueda Rueda, Industrial University of Santander

Master’s Degree in Mathematical Education. School of Mathematics at the Industrial University of Santander.

Sandra Evely Parada Rico, Industrial University of Santander

Professor at the School of Mathematics at the Industrial University of Santander.

References

ÁVILA, P. (2011) Razonamiento covariacional a través de software dinámico. El caso de la variación lineal y cuadrática. Tesis de maestría no publicada. Universidad Nacional, Medellín, Colombia.

CARLSON, M., JACOBS, S., COE, E., LARSEN, S. y HSU, E. (2003). Razonamiento covariacional aplicado a la modelación de eventos dinámicos: Un marco conceptual y un estudio. EMA, 8 (2), 151-156

FIALLO, J. & PARADA, S.E. (2014) Curso de precálculo apoyado en el uso de GeoGebra para el desarrollo del pensamiento variacional. Revista Científica 0 (20). Universidad Distrital. Bogotá, Colombia. ISSN 0124-2253

MENA, C. (2014) La transformación de funciones desde un enfoque covariacional. Tesis de maestría no publicada. Universidad Nacional, Medellín, Colombia

MINISTERIO DE EDUCACIÓN NACIONAL (2006) Estándares básicos de competencias en Matemáticas. Recuperado de: http://www.eduteka.org/pdfdir/MENEstandaresMatematicas2003.pdf

SALDANHA, L. y THOMPSON, P.W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. En S.B. BERENSEN, K.R. DAWKINS, M. BLANTON, W.N. COULOMBE, J. KOLB, K. NORWOOD y L. STIFF (Eds.), Proceedings of the 20 th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 298-303). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

VASCO, C. (2006). Didáctica de la matemática. Artículos selectos. ISBN: 958-8226-85-6. Vol. 1 págs. 150. Bogotá: Editorial Universidad Pedagógica Nacional.

VILLA-OCHOA, J. A. (2012). Razonamiento covariacional en el estudio de funciones cuadráticas. Tecné, Episteme y Didaxis, 0(19), 9-25.

Published

2016-11-22

How to Cite

Rueda Rueda, N. J., & Parada Rico, S. E. (2016). Co-variational thinking in optimization situations modeled by dynamic geometry environments. Uni-Pluriversidad, 16(1), 51–63. https://doi.org/10.17533/udea.unipluri.326184

Issue

Section

RESEARCH REPORTS AND UNPUBLISHED ESSAYS

Most read articles by the same author(s)