Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults

Authors

  • Emerson Gallego Peláez Corporación Universitaria Remington
  • María Elena Maldonado Celis Universidad de Antioquia
  • Luz Gladys Posada Jhonson Corporación Universitaria Remington
  • Ana Cristina Gómez García Universidad de Antioquia
  • David Torres Camargo Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.vitae.v28n2a343810

Keywords:

Adipose tissue, Inflammation, Adipokines, Berry, Osmotic-dehydration

Abstract

Background: A Body Mass Index (BMI) greater than 24.9 Kg/m2 promotes chronic inflammation due to increased secretion of pro-inflammatory adipokines. Consuming fruits rich in bioactive compounds such as berries is a promising strategy to counteract this effect. Objectives: Determine the effect of osmo-dehydrated Andean Berry consumption on inflammatory biomarkers (TNF-α, IL-6, IL-1β, and adiponectin) and plasma antioxidant capacity in overweight and obese adults after 21 days. Methods: Andean Berry was osmo-dehydrated in 70% sucrose syrup. Antioxidant activity, proximal composition, phenolic content, microbiological analysis, and sensory analysis of the product were determined. Twenty-five obese and overweight subjects consumed 35g of osmo-dehydrated berry for 21 days. Inflammatory biomarkers and antioxidant capacity in plasma were evaluated at the beginning and end of the study. Results: Osmo-dehydrated Andean Berry presented a total phenolic content of 692.7 ± 47.4 mg Gallic Acid Equivalents/100 g. All biomarkers evaluated in the subjects showed statistically significant differences (p> 0.05), except for CRP, before and after the study. IL-6 presented the more significant reduction among all pro-inflammatory adipokines with an effect size of 18.4 Conclusions: Regular consumption of osmo-dehydrated Andean Berry contributes to decreasing pro-inflammatory biomarkers and improves the plasma antioxidant capacity of overweight and obese adults.

|Abstract
= 571 veces | PDF
= 290 veces| | HTML
= 4 veces|

Downloads

Download data is not yet available.

References

Organization WH. Obesity and overweight. Obesity and Overweight factsheet from the WHO. 2018. http://www.who.int/mediacentre/factsheets/fs311/en/index.html

Stephen S Lim, Theo Vos, Abraham D Flaxman, Goodarz Danaei KS, Heather Adair-Rohani, Markus Amann, H Ross Anderson KGA, Martin Aryee, Charles Atkinson, Loraine J Bacchus, Adil N Bahalim K, Balakrishnan, John Balmes SB-C, Lim SS, Vos T, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. DOI: https://doi.org/10.1016/s0140-6736(12)61766-8

Lafontan M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 2014;40(1):16–28. DOI: http://dx.doi.org/10.1016/j.diabet.2013.08.002

Acoltzin Vidal C, Rabling Arellanos E. Obesidad. 1st ed. Universidad de Colima; 2014. 33-36 p.

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. DOI: https://doi.org/10.1038/nrc3611

Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol Mech Dis 2016;11(1):421–49. DOI: https://doi.org/10.1146/annurev-pathol-012615-044359

Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: Therapeutic targets. Cytokine Growth Factor Rev. 2013;24(6):503–13. DOI: http://dx.doi.org/10.1016/j.cytogfr.2013.10.001

Katira A, Tan PH. Evolving role of adiponectin in cancer-controversies and update. Cancer Biol Med. 2016;13(1):101–19. DOI: https://doi.org/10.28092/j.issn.2095-3941.2015.0092

Maldonado Celis ME, Urango Marchena LA, Arismendi Bustamante LJ. Propiedades quimiopreventivas del mango y la manzana en el cańcer de colon. Salud(i)Ciencia. 2014;20(6):614–8. Available from: https://www.siicsalud.com/dato/sic/206/128728.pdf

Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, et al. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Vol. 21, Molecules. 2016. 1-40 p. DOI: https://doi.org/10.3390/molecules21020169

Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T. Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol. 2006;71(8):1184–97. DOI: https://doi.org/10.1016/j.bcp.2005.12.042

Tsuda T. Regulation of Adipocyte Function by Anthocyanins ; J Agric Food Chem. 2008;56:642–6. DOI: https://doi.org/10.1021/jf073113b

Karlsen A, Paur I, Bøhn SK, Sakhi AK, Borge GI, Serafini M, et al. Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr. 2010;49(6):345–55. DOI: https://doi.org/10.1007/s00394-010-0092-0

Kolehmainen M, Mykkänen O, Kirjavainen P V., Leppänen T, Moilanen E, Adriaens M, et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res. 2012;56(10):1501–10. DOI: https://doi.org/10.1002/mnfr.201200195.

Maldonado Celis ME, Franco Tobón YN, Agudelo C, Arango-Varela SS, Rojano B. Andean Berry (Vaccinium meridionale Swartz). In: Fruit and Vegetable Phytochemicals: Chemistry and Human Health, Volume 2. 2nd ed. 2017. p. 869–82.

Gaviria CA, Ochoa CI, Sánchez NY, Medina CI, Lobo M, Galeano PL, et al. Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In: Perspectivas del cultivo de agraz o mortiño. 1st ed. 2009. p. 93–109.

Maldonado-Celis ME, Arango-Varela SS, Rojano BA. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Rev Cuba Plantas Med. 2014;19(2):172–84. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962014000200006&lng=es.

Zapata Vahos IC, Ochoa S, Maldonado-Celis ME, Zapata Zapata AD, Rojano B. Cytotoxic effect and antioxidant activity of Andean berry (Vaccinium meridionale Sw) wine. J Med Plants Res. 2016;10(27):402–8. DOI: 1 https://doi.org/0.5897/JMPR2016.6100

Zapata Vahos IC, Villacorta V, Maldonado-Celis ME, Castro Resptrepo D, Rojano B. Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. J Med Plants Res. 2015;9(13):445–53. DOI: https://doi.org/10.5897/JMPR2014.5744

Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov Food Sci Emerg Technol. 2016;34:29–43. DOI: http://dx.doi.org/10.1016/j.ifset.2016.01.003

Osorio C, Franco MS, Castaño MP, González-Miret ML, Heredia FJ, Morales AL. Colour and flavour changes during osmotic dehydration of fruits. Innov Food Sci Emerg Technol. 2007;8(3):353–9. DOI: https://doi.org/10.1016/j.ifset.2007.03.009

García Carvajal E, Vásquez MV, Peláez C. Determinación de las características fisicoquímicas y las propiedades bioactivas del fruto mortiño (Vaccinium Merdionale Swartz) y su relación con los estadios de maduración. [Grade Work]. [Medellín, Colombia]: Universidad de Antioquia; 2015.

Brand-Williams, Cuvelier ME, Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci Technol. 1995;28:25–30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–6. DOI: https://doi.org/10.1006/abio.1996.0292

Zapata K, Cortes FB, Rojano BA. Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Inf Tecnol. 2013;24(5):103–12. DOI: https://doi.org/10.4067/S0718-07642013000500012

Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58. Available from: https://www.ajevonline.org/content/16/3/144

Ministerio de salud y protección social. Guía de práctica clínica para el diagnóstico, seguimiento de la DM tipo 2 en la población mayor de 18 años [Internet]. Vol. IMSS-191-1, Gpc. 2016. 129 p. Available from: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_637/GPC_diabetes/DIABETES_TIPO_2_COMPLETA.pdf

Ministerio de Salud y Protección Social. Resolución 3929 [Internet]. 2013 p. 21–2. Available from: https://www.invima.gov.co/documents/20143/441425/Resolucion-3929-2013.pdf/28252dd6-41eb-a575-8ec4-c876e6326a5e

Garzón GA, Narváez CE, Riedl KM, Schwartz SJ. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010;122(4):980–6. DOI: https://doi.org/10.1016/j.foodchem.2010.03.017

Dermesonlouoglou E, Chalkia A, Taoukis P. Application of osmotic dehydration to improve the quality of dried goji berry. J Food Eng. 2018;232:36–43. DOI: https://doi.org/10.1016/j.jfoodeng.2018.03.012

Kraujalyte V, Venskutonis PR, Pukalskas A, Česoniene L, Daubaras R. Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes. Food Chem. 2015;188(August):583–90. DOI: https://doi.org/10.1016/j.foodchem.2015.05.031

Kristo A, Klimis-Zacas D, Sikalidis A. Protective Role of Dietary Berries in Cancer. Antioxidants. 2016;5(4):37. DOI: https://doi.org/10.3390/antiox5040037

Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9(10):1–15. DOI: https://doi.org/10.3390/nu9101089

Mccrickerd K, Forde CG. Sensory influences on food intake control: Moving beyond palatability. Obes Rev. 2016;17(1):18–29. DOI: https://doi.org/10.1111/obr.12340

Johnson SA, Figueroa A, Navaei N, Wong A, Kalfon R, Ormsbee LT, et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet. 2015;115(3):369–77. DOI: http://dx.doi.org/10.1016/j.jand.2014.11.001

Brown EM, McDougall GJ, Stewart D, Pereira-Caro G, González-Barrio R, Allsopp P, et al. Persistence of Anticancer Activity in Berry Extracts after Simulated Gastrointestinal Digestion and Colonic Fermentation. PLoS One. 2012;7(11):3–12. DOI: https://doi.org/10.1371/journal.pone.0049740

Luzardo-Ocampo I, Campos-Vega R, Gaytán-Martínez M, Preciado-Ortiz R, Mendoza S, Loarca-Piña G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res Int. 2017;100(March):304–11. DOI: https://doi.org/10.1016/j.foodres.2017.07.018

Li L, Wang L, Wu Z, Yao L, Wu Y, Huang L, et al. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep. 2014;4:1–11. DOI: https://doi.org/10.1038/srep06234

Joseph S V., Edirisinghe I, Burton-Freeman BM. Berries: Anti-inflammatory effects in humans. J Agric Food Chem. 2014;62(18):3886–903. DOI: https://doi.org/10.1021/jf4044056

Liu Y, Li D, Zhang Y, Sun R, Xia M. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. AJP Endocrinol Metab. 2014;306(8): E975–88. DOI: https://doi.org/10.1152/ajpendo.00699.2013

Downloads

Published

17-06-2021

How to Cite

Gallego Peláez, E., Maldonado Celis, M. E., Posada Jhonson, L. G., Gómez García, A. C., & Torres Camargo, D. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2). https://doi.org/10.17533/udea.vitae.v28n2a343810

Issue

Section

Natural Products

Most read articles by the same author(s)