Effect of the chemical composition of fluid foods on the rate of fouling processing during sterilization

Authors

DOI:

https://doi.org/10.17533/udea.vitae.v30n1a349368

Keywords:

Fouling, Resistant Dirt Factor (Rd), Heat Exchanger, Heat transfer (Q), Dairy products

Abstract

Background: This research was motivated by the determination of the sanitation schedule in the heat exchanger area for some products (milk, avocado juice, and orange juice), as well as the inconsistency of the results of previous studies related to the chemical composition of the fouling layer.

Objectives: a) to test the effect of raw material composition on the chemical composition of the fouling layer. b) to test microbial growth's effect on fouling's chemical composition (protein).

Methods: mathematical derivation of the formation process of Resistant Dirt Factor (Rd) in the form of an Equation; ANOVA was used to test the effect of the dependent variable (protein) and predictor (microbial).

Results: a) The composition of the raw material strongly influences the chemical composition of the fouling layer; b) There is a strong effect between microbial growth and protein content as a fouling composition (p<0.05).

Conclusion: A strong influence between microbial growth and the composition of the fouling layer (protein) can close the research gap related to the inconsistency of previous research results (fouling layer composition), so there is no prolonged debate.

|Abstract
= 424 veces | PDF
= 247 veces| | HTML
= 3 veces|

Downloads

Download data is not yet available.

References

M. Abu Madi, R. A. Johns, and M. R. Heikal, “Performance characteristics correlation for round tube and plate finned heat exchangers: Equations relatives aux performances d’échangeurs de chaleur constitués de tubes ronds et de plaques à ailettes,” Int. J. Refrig., 1998; 21 (7): 507–517. DOI: https://doi.org/10.1016/S0140-7007(98)00031-0.

Y. Mahdi, A. Mouheb, and L. Oufer, “A dynamic model for milk fouling in a plate heat exchanger,” Appl. Math. Model.2009; 33 (2): 648–662. DOI: https://doi.org/10.1016/j.apm.2007.11.030

K. R. Goode, K. Asteriadou, P. T. Robbins, and P. J. Fryer, “Fouling and cleaning studies in the food and beverage industry classified by cleaning type,” Compr. Rev. Food Sci. Food Saf. 2013; 12 (2): 121–143. DOI: https://doi.org/10.1111/1541-4337.12000

C. Hagsten, F. Innings, C. Trägårdh, L. Hamberg, M. Paulsson, and T. Nylander, “Removal of UHT dairy fouling — An efficient cleaning process by optimizing the rate controlling alkaline cleaning step,” Food Bioprod. Process. 2019; 113: 101–107. DOI: https://doi.org/10.1016/j.fbp.2018.11.010

C. Boxler, W. Augustin, and S. Scholl, “Composition of milk fouling deposits in a plate heat exchanger under pulsed flow conditions,” J. Food Eng.2014; 121 (1): 1–8. DOI: https://doi.org/10.1016/j.jfoodeng.2013.08.003

A. B. Kananeh, E. Scharnbeck, U. D. Kück, and N. Räbiger, “Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings,” Food Bioprod. Process.2010; 88 (4): 349–356. DOI: https://doi.org/10.1016/j.fbp.2010.09.010

K. H. Teng et al., “Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces,” Powder Technol.2017;315: 216–226. DOI: https://doi.org/10.1016/j.powtec.2017.03.057

T. J. M. Jeurnink Walstra P De Kruif C G, “Mechanisms of fouling in dairy processing,” Netherlands Milk Dairy J. 1996; 50: 407–426. Available at: https://www.researchgate.net/profile/Cg-kees-De-Kruif/publication/40202234_Mechanisms_of_Fouling_in_Dairy_Processing/links/00b7d530d8dc137635000000/Mechanisms-of-Fouling-in-Dairy-Processing.pdf.

P. J. Skudder, B. E. Brooker, A. D. Bonsey, and N. R. Alvarez-Guerrero, “Effect of pH on the formation of deposit from milk on heated surfaces during ultra high temperature processing,” J. Dairy Res.1986; 53(1): 75–87. DOI: https://doi.org/10.1017/S0022029900024687

H. C. Deeth, “The effect of UHT processing and storage on milk proteins,” Milk Proteins From Expr. to Food. 2020: 385–421. DOI: https://doi.org/10.1016/B978-0-12-815251-5.00010-4

O. Fysun, H. Kern, B. Wilke, and H.-C. Langowski, “Formation of dairy fouling deposits on food contact surfaces,” Int. J. Dairy Technol. 2019; 72 (2): 257–265. DOI: https://doi.org/10.1016/B978-0-12-815251-5.00010-4

M. Lalande, F. Rene, and J. P. Tissier, “Fouling and its control in heat exchangers in the dairy industry,” Biofouling. 1989; 1(3): 233–250. DOI: https://doi.org/10.1080/08927018909378111

M. Lalande, J.-P. Tissier, and G. Corrieu, “Fouling of a plate heat exchanger used in ultra-high-temperature sterilization of milk,” J. Dairy Res. 1984; 51 (4): 557–568. DOI: https://doi.org/10.1017/S0022029900032878

S. Flint et al., “Bacterial fouling in dairy processing,” Int. Dairy J. 1984; 101:104593. DOI: https://doi.org/10.1016/j.idairyj.2019.104593

K. Grijspeerdt, L. Mortier, J. De Block, and R. Van Renterghem, “Applications of modelling to optimise ultra high temperature milk heat exchangers with respect to fouling,” Food Control. 2004; 15 (2): 117–130. DOI: https://doi.org/10.1016/S0956-7135(03)00023-9

B. Malmgren et al., “Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures,” Int. Dairy J. 2017; 71: 60–75. DOI: https://doi.org/10.1016/j.idairyj.2017.03.002

T. Mohammadi, S. S. Madaeni, and M. K. Moghadam, “Investigation of membrane fouling,” Desalination. 2003; 153( 1–3): 155–160. DOI: https://doi.org/10.1016/S0011-9164(02)01118-9

M. Kazemimoghadam and T. Mohammadi, “Chemical cleaning of ultrafiltration membranes in the milk industry,” Desalination. 2018; 204 (1–3): 213–218. DOI: https://doi.org/10.1016/j.desal.2006.04.030

T. Steinhauer, J. Schwing, S. Krauß, and U. Kulozik, “Enhancement of ultrafiltration-performance and improvement of hygienic quality during the production of whey concentrates,” Int. Dairy J. 2015; 45: 8–14. DOI: https://doi.org/10.1016/j.idairyj.2015.01.010

L. P. Cappato et al., “Ohmic heating in dairy processing: Relevant aspects for safety and quality,” Trends Food Sci. Technol.2017; 62: 104–112. DOI: https://doi.org/10.1016/j.tifs.2017.01.010

Badan POM RI, “Peraturan Kepala Badan Pengawas Obat Dan Makanan Republik Indonesia Tahun 2011 Tentang Metode Analisis Kosmetika. Jakarta, 2011: 1–92p

Bott T.R., “Aspects of Biofilm Formation and Destruction,” Corros. Rev. 1993; 11 (1–2): 1–24. .DOI: https://doi.org/10.1515/CORRREV.1993.11.1-2.1

S. Flint and N. Hartley, “A modified selective medium for the detection of Pseudomonas species that cause spoilage of milk and dairy products,” Int. Dairy J. 1996; 6(2): 223–230. DOI: https://doi.org/10.1016/0958-6946(95)00007-0

S. H. Flint, H. Van Den Elzen, J. D. Brooks, and P. J. Bremer, “Removal and inactivation of thermo-resistant streptococci colonising stainless steel,” Int. Dairy J. 1999; 9 (7) 429–436. DOI: https://doi.org/10.1016/S0958-6946(99)00048-5

ANGELETTI, SANDRO; MORESI, MAURO. Modelling of multiple‐effect falling‐film evaporators. International Journal of Food Science & Technology, 1983;18 (5): 539-563. 83. https://doi.org/10.1111/j.1365-2621.1983.tb00296.x

A. Kayode Coker, Heat Transfer: Fortran Programs for Chemical Process Design,Analysis, and Simulation, Gulf Professional Publishing,1995;590-720.

DOI:https://doi.org/10.1016/B978-088415280-4/50009-1.

Setyaningsih, Ir Iiani, et al. Panduan Praktikum Mikrobiologi Hasil Perairan. PT Penerbit IPB Press, Bogor, 2021: 20-90p

Production process flow chart

Downloads

Published

28-02-2023

How to Cite

Budianto, B., Feri, Z. O., Suparmi, A., & Arifin, M. J. (2023). Effect of the chemical composition of fluid foods on the rate of fouling processing during sterilization. Vitae, 30(1). https://doi.org/10.17533/udea.vitae.v30n1a349368

Issue

Section

Foods: Science, Engineering and Technology